Draft

Physical Properties

Solidity, Thixotropic Behaviour and Piling Behaviour –

Desk Study

K. Wichmann*, C. Thormählen*, E. Pasqualini**, E. Fratalocchi**, P. Battistoni**, L. Spinosa ***, E. Carniani**

*Contractor: Technical University Hamburg-Harburg (TUHH), Germany; E-mail: <u>thormaehlen@tuhh.de</u>

Cooperation: Polytechnic University of Marche Region, Italy *CNR c/o Commissariat for Env. Emerg. in Puglia Region, Italy

Acknowledgement

This work has been carried out with financial support from the following EU Member States: UK, Germany, France, Italy, Spain, Nordic countries, Netherlands, Denmark, Austria, EU DG XI and JRC, Ispra.

CONTENTS

LIST C	OF TABLES	6
LIST C	DF FIGURES	6
SUMM	IARY	7
INTRO	DDUCTION	8
1.1	The Horizontal project	8
1.2	The Work Package 7	8
1.3	Desk studies subject	9
1.4 1.4.1 1.4.2 1.4.2.1 1.4.2.2 1.4.2.3 1.4.2.4	Evaluation of needs for control of operations and material characteristics Evaluation of needs for control of operation Material characteristics Sewage sludge Waterworks sludge Treated bio-waste Soil	10 10 11 11 13 14 16
1.5	Search for existing Standards and Methods	18
1.6 1.6.1 1.6.2 1.6.3	Basic informations Solidity Thixotropic behaviour of solid materials Piling behaviour	18 18 20 21
2.	EXISTING STANDARDS OR DRAFT STANDARDS	22
2.1	Flowability	22
2.2	Solidity	22
2.3	Thixotropic behaviour	23
2.4	Piling behaviour	23
3.	EVALUATION OF DRAFTING A HORIZONTAL STANDARD	24
3.1 3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 3.1.1.5 3.1.1.6 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.2.5 3.1.2.6 3.1.3 3.1.3.1 3.1.3.2	Solidity Shearing apparatus Standards analysed Laboratory or field test feasibility Apparatus What is measured and how Material to be examined Feasibility of the methods to the materials for the Horizontal project Vane testing apparatus Standards and non-standardised methods analysed Laboratory or field test feasibility Apparatus What is measured and how Material to be examined Feasibility of the methods to the materials for the Horizontal project Penetrometer Standards and non-standardised methods analysed Laboratory or field test feasibility Annaratus	24 24 25 25 25 26 26 26 26 26 26 26 26 26 27 27 27 29 30 30 30 30 30 30 33
3.1.3.4	What is measured and how	37
HORIZ	ZONTAL – Report No. 22	3

3.1.3.5	Material to be examined	38
3.1.3.6	Feasibility of the methods to the materials for the Horizontal project	39
3.2	Thixotropic behaviour of solid materials	40
3.2.1	Standards analysed	40
3.2.2	Laboratory or field test feasibility	41
3.2.3	Apparatus	41
3.2.4	What is measured and how	46
3.2.5	Material to be examined	46
3.2.6	Feasibility of the methods to the materials for the Horizontal project	46
3.3	Piling behaviour	47
3.3.1	Standards and non-standardised methods analysed	47
3.3.2	Laboratory or field test feasibility	48
3.3.3	Apparatus	48
3.3.4	What is measured and how	51
3.3.5	Material to be examined	51
3.3.6	Feasibility of the methods to the materials for the Horizontal project	51
4.	CRITICAL POINT AND RECOMMENDATIONS	53
4.1	Solidity	53
4.1.1	Comparison (discussion: pro/contra)	53
4.1.2	Recommendations	56
4.1.2.1	Laboratory reference method	56
4.1.2.2	Field test	56
4.2	Thixotropic behaviour of solid materials	56
4.2.1	Comparison (discussion: pro/contra)	56
4.2.2	Recommendations	57
4.2.2.1	Laboratory reference method	57
4.2.2.2	Field test	57
4.3	Piling behaviour	57
4.3.1	Comparison (discussion: pro/contra)	57
4.3.2	Recommendation	58
4.3.2.1	Laboratory reference method	58
4.3.2.2	Field test	58
4.4	Summary of recommended methods	58
4.5	Research needs	59
4.5.1	Basics of methods	59
4.5.2	Applicability of methods to Horizontal materials	59
4.5.3	Questions to be answered	60
4.5.4	Route, how to answer them	60
4.5.5	Steps to be taken	60
4.6 4.6.1 4.6.2 4.6.3	Contacts with CEN/TC's/WG's Actions Comments received and incorporated Official meetings	61 61 61
5.	DRAFT STANDARD (CEN TEMPLATE)	62
5.1 5.1.1 5.1.1.1 5.1.1.2 5.1.1.3 5.1.2	Solidity Laboratory reference method Method 1 Method 2 Method 3 Field test	62 62 62 62 62 62 62

5.1.2.1 Method 1 5.1.2.2 Method 2	62 62
 5.2 Thixotropic behaviour of solid materials 5.2.1 Laboratory reference method 5.2.1.1 Method 1 5.2.2 Field test 5.2.2.1 Method 1 5.2.2.2 Method 2 	62 62 63 63 63
 5.3 Piling behaviour 5.3.1 Laboratory reference method 5.3.1.1 Method 1 5.3.1.2 Method 2 5.3.2 Field test 5.3.2.1 Method 1 	63 63 63 63 63 63
REFERENCES	64
ANNEX 1	68
ANNEX 2	68
ANNEX 3	68
ANNEX 4	68
ANNEX 5	68
ANNEX 6	68
ANNEX 7	68
ANNEX 8	68
ANNEX 9	68
ANNEX 10	68
ANNEX 11	68
ANNEX 12	68
ANNEX 13	69
ANNEX 14	71

LIST OF TABLES

Table 1: Particle size distribution of sewage sludges	11
Table 2: Rheological properties of sewage sludges	12
Table 3: Determination of the composition of sludge	13
Table 4: Particle size distribution of OFMSW	15
Table 5: Rheological properties of OFMSW aerobically or anaerobically treated	16
Table 6: Grain size of soils according to different classification systems	17
Table 7: Standards for shearing apparatus	
Table 8: Standards and non-standardised methods for vane testing apparatus	27
Table 9: Standards and non-standardised methods for penetrometer	
Table 10: Standards for thixotropic behaviour	
Table 11: Standards and non-standardised methods for piling behaviour	
Table 12: Summary of the recommended apparatuses	

LIST OF FIGURES

Fig. 1: Collation between shearing strength and dry solid method [9]	. 12
Fig. 2: Comparison dry solid contents vs. laboratory vane shear strength [12]	. 14
Fig. 3: Schematic stress-strain curve of solid materials [28]	. 19
Fig. 4: Thixotropy in viscosity-time-graph ([29] modified)	. 20
Fig. 5: Thixotropy in flow curve graph and viscosity curve ([30] modified)	. 20
Fig. 6: Test samples in single and double shear (shear box) [32]	. 25
Fig. 7: Triaxial compression test showing test pressure and assumed plane of failure AB [33] .	. 25
Fig. 8: Vane shear apparatus and geometry of field vanes [33, 34]	. 28
Fig. 9: Vane torque spring, electrical transducer details geometry and miniature vane blade	
geometry [35]	. 28
Fig. 10: Laboratory vane shear apparatus [23]	. 29
Fig. 11: Pocket vane shear apparatus [15]	. 29
Fig. 12: Soil cone penetrometer [36]	. 34
Fig. 13: Vicat apparatuses [37]	. 34
Fig. 14: Apparatus for measuring consistency by penetration [38]	. 35
Fig. 15: Penetrometer with standard and optional penetration cone (dim. in mm) [39, 40]	. 35
Fig. 16: Magnesium penetrometer cone [41]	. 36
Fig. 17: Pocket penetrometer after Neuschäfer [23]	. 36
Fig. 18: Pocket cylinder penetrometer [42]	. 37
Fig. 19: Consistometer (Vebe meter, dimensions in mm) [43]	. 42
Fig. 20: Flow table [44]	. 42
Fig. 21: Flow table and conical mould (dimensions in mm) [45]	. 43
Fig. 22:Vibrating table (dimensions in millimetre) [46]	.44
Fig. 23: Compaction rig assembly with vibrating hammer (dimensions mm) [47]	.45
Fig. 24: Forms of slump [49]	. 48
Fig. 25: Compacting factor apparatus [50]	. 49
Fig. 26: Oedometer [48]	. 49
Fig. 27: Device for loading [48]	. 50
Fig. 28: Cubic Piling Box at start of test (closed sidewalls) [48]	. 50
Fig. 29: Cubic Piling Box at the end of test (opened sidewalls) [48]	. 50
Fig. 30: Relation between the parameter K and the apex angle β of the cone	. 54
Fig. 31: Comparison penetrometer bearing capacity vs. laboratory vane shear strength [16]	. 55

SUMMARY

The "Horizontal" project has the objective to develop horizontal and harmonised European standards in the fields of sludge, treated bio-waste and soil to facilitate regulation of these major streams in the multiple decisions related to different uses and disposal governed by EU Directives. The Horizontal Project includes the Work Package 7 "Mechanical properties" consisting in the development of Desk Studies on physical consistency, because it is recognized that this property is very important for the characterization of sludge, since it affects almost all treatment, utilization and disposal operations, such as storage, pumping, transportation, handling, land-spreading, dewatering, drying, landfilling. The importance of the physical consistency is also true for the characterization of treated bio-waste and soil. Also handling and utilization of many other materials, such as cement and asphalt are strictly depending on their physical consistency. The needs for control of operations and also material characteristics are described.

The first action carried out is consisted in searching for existing standards to be possibly used or adapted for utilisation in the specific field of consistency evaluation. The complete list of standards is reported in Annex 1, from which it can be seen that more than 250 standards and non-standardised methods are potentially applicable to consistency evaluation. On the basis of the selected list of standards and non-standardised methods for further consideration the methods for the determination of solidity, thixotropic behaviour and piling behaviour of sludge, treated bio-waste and soil have been divided into several groups, according to the instruments used for measuring:

- Solidity: Shearing apparatus, Vane testing apparatus and Penetrometers
- Thixotropic behaviour: It should be investigated a combination of methods for determination of the solidity like penetration, etc. and an energy-input in terms of "flow" apparatus to simulate the shear stress.
- Piling behaviour: Slump test apparatus, Compacting apparatus, Cubic Piling Box (CPB) and "Turned Box".

For each group was evaluated the laboratory or field test feasibility. Apparatuses of the measuring procedures and existing applications to different materials were described. On this basis the applicability of the described methods to the materials for the Horizontal Project was evaluated and documented in the lists of analysed standards (Chapter 3). The recommended methods are for solidity the "Laboratory vane shear apparatus" and "Vicat needle" as laboratory reference and the pocket penetrometers for field test. The penetrometers in general could be used for both laboratory reference method and field test. Also for determination of the thixotropic behaviour the penetrometer is together with an energy-input in terms of a vibrating table or a hammer a suitable instrument. For measuring the piling behaviour the Cubic Piling Box (CPB) and the Oedometer are the recommended methods, whereby the CPB could be used in both laboratory and field while the Oedometer could be used only in the laboratory.

For the research needs first the basics of methods are explicated. Also the applicability of methods to Horizontal materials is clarified. The questions to be answered (precision, repeatability, reliability, etc.), the route, how to answer them and finally the steps to be taken are important for following procedures within the Horizontal project.

The results of the circulation within the consulting CEN/TC's/WG's/TG's – Committee's are documented by means of listed actions, comments, which were received, and official meetings, which amount up to four WP7 meetings and two CEN/TC308/WG1 and CEN/TC308/WG1/TG3 meetings each so far. In the Horizontal-Report No. 22 a total of 11 proposals for draft standards are given, consisting of six laboratory methods and five field tests.

INTRODUCTION

1.1 The Horizontal project

The revision of the Sewage Sludge Directive 86/278/EEC, the upcoming Composting Directive on the biological treatment of biodegradable waste and the Soil Monitoring Directive call for standards on sampling, hygienic and biological parameters, methods for inorganic and organic contaminants, and for mechanical properties of these materials.

In addition, when materials cannot be utilized, landfilling becomes important, in which case leaching becomes an issue as stipulated by the Council Directive 1999/31/EC on the landfill of waste. More recently, a Council Decision establishing criteria and procedures for the acceptance of waste at landfills, pursuant to Article 16 and Annex II of mentioned Directive on the landfill of waste was issued (16/12/02) with physical consistency being one basic parameter of interest.

The "*Horizontal*" project has the objective to develop horizontal and harmonised European standards in the fields of sludge, treated bio-waste and soil to facilitate regulation of these major streams in the multiple decisions related to different uses and disposal governed by EU Directives.

Part of the work to be carried out will focus on *co-normative* work with an emphasis on horizontal standardization starting from existing standards developed for the same parameter in the fields of sludge, treated bio-waste and soil. Another part of the work will focus on *prenormative* research required to develop standards lacking at this point and needed in the next revision of the regulations in these fields.

1.2 The Work Package 7

The Horizontal Project includes the Work Package 7 "*Mechanical properties*" consisting in the development of Desk Studies on physical consistency, because it is recognized that this property is very important for the characterization of sludge e.g., since it affects almost all treatment, utilization and disposal operations, such as storage, pumping, transportation, handling, land-spreading, dewatering, drying, landfilling.

In fact, the selection of the most suitable equipment and procedure for land application, storage and transportation of sludge e.g. is strongly connected to its consistency. Similarly, compacting sludge in a landfill or forming a pile in composting is depending on sludge shear strength rather than on its solids concentration.

In particular, with reference to the regulations requirements, according to the Sludge Directive 278/86, agricultural reused sludge must have agronomic interest, be healthy and easily usable, i.e. easily stored, transported, handled, and spread.

In Council Directive 1999/31/EC (Landfill Directive), Article 2 (q) gives a definition of "liquid waste", and Article 5 (3.a) does not allow a liquid waste to be landfilled, but a standardized method for this evaluation has to be developed yet. Further, Annex II (2. General principles) requires that "The composition, ... and general properties of a waste to be landfilled must be known as precisely as possible", and Annex I (6. Stability) is referring to "... ensure stability of the mass of waste ... particularly in respect of avoidance of slippage", so the shear strength and piling behaviour must be known. Article 2 (h) says, that "treatment means ... processes ... in order to ... facilitate its handling". Finally, Article 11 (1.b) asks for: " – visual inspection of the waste at the entrance and at the point of deposit and, as appropriate, verification of conformity with the description provided in the document submitted by the holder", so simple and easy tests to be carried out on the field and followed by the operators must be defined.

Further, the Council Directive establishing criteria and procedures for the acceptance of waste at landfills, pursuant to Article 16 and Annex II of mentioned Directive on waste landfilling included "consistency" among the basic parameters to be evaluated for waste characterization

before landfilling; for specific cases it is also demanded, that EU Member States must set criteria to ensure a sufficient physical stability and bearing capacity of waste.

It is also to be pointed out that in many analytical methods for sludge characterization (e.g. pH, dry matter, leachability, etc.) different procedures are indicated depending on whether the sample to be examined is liquid or not, is solid or not, but no procedures are given for evaluating such properties. The importance of the physical consistency is also true for the characterization of treated bio-waste and soil.

For WP7 two desk studies were performed: No. 21 for the parameter "Flowability" and No. 22 for the parameters "Solidity", "Thixotropic Behaviour" and "Piling Behaviour". The work was coordinated in WP7 and done in cooperation of the involved teams. Therefore the reports No. 21 and No. 22 contain some chapters (1.1 - 1.5 and 2) and the list of standards and non-standardised methods (Annex 1) in common.

1.3 Desk studies subject

The Task Group 3 (TG3) of CEN/TC308/WG1 defined 3 physical states for sludge (CEN/TC308/WG1/TG3, 2000):

a) *Liquid*: sludge flowing under the effect of gravity or pressure below a certain threshold.

b) *Paste-like*: sludge capable of continuous flow under the effect of pressure above a certain threshold and having a shear resistance below a certain threshold.

c) *Solid*: sludge having a shear resistance above a certain threshold.

This firstly involves the necessity to set up methods to measure values in the range of the boundary area between liquid and paste-like behaviours (limit of *flowability*) and that between solid and paste-like (limit of *solidity*).

Further, the *thixotropic* behaviour of solid materials (from "the solid to the liquid state and vice versa") must be evaluated, together with the *piling* behaviour referred both to "compaction and physical stability".

Also the CEN/TC292/WG2, in the method prEN 12457 for the characterisation of waste included in Annex B (Informative) the description of a test for determining whether waste is in the liquid state (CEN/TC292/WG2, 2002).

Although the methods to be developed are partly known and used in other technology fields, e.g. soil mechanics, materials for construction works (concrete, suspensions), etc., widely accepted methodologies for the evaluation of above properties, able to give comparable and reliable results, are not available yet.

It therefore follows the necessity to define *simple* and *reliable* measurement procedures to be applied in the *field*, together with those to be used as reference in *laboratory*.

Standardisation procedures for Horizontal material examination will consist of

- Sampling, transport, preservation, storage
- Pre-treatment
- Measurement and evaluation of results.

1.4 Evaluation of needs for control of operations and material characteristics

1.4.1 Evaluation of needs for control of operation

The purpose of using characterisation standards is to control and ascertain the material amenability to handling and different operations. Materials considered are

- Sewage sludge
- Waterworks sludge
- Treated bio-waste and
- Soil.

For handling and operating these materials many parameters should have to be known; they include homogeneity, particles sizes and shape, solids (total, suspended, volatile) that, if available, could define the range of variation of variable considerations (i.e. viscosity, etc.).

The parameters flowability is an overall parameter taking into account all above mentioned material properties or characteristics. In particular, the flowability evaluation for sludges, including wastewater, waterworks and similar sludges, is of fundamental importance in many operations such as pumping, transportation, storage, dewatering, stabilisation, spreading, etc. also considering the possible formation from a gel to a liquid (sol) and vice versa. Similarly, for treated bio-waste, including the shredded organic fraction of municipal solid waste (OFMSW), in operations such as handling, digestion, reuse, etc. the measure of the parameter flowability have to be considered. Finally, for fine-grained soils, the water content (and therefore consistency and flowability) has always been considered an important indication of their mechanical properties. Moreover in case of soil slurries it is very important to verify flowability as a measurement of their workability and time of setting.

The solidity is also a parameter, which concerns all the material properties or characteristics mentioned above. The determination of this parameter is getting more important for handling of solid materials like dewatered sludge, other treated bio-waste -e.g. in terms of pieces (compost) – and soil, where the grain size distribution and water content have to be considered, during operations like pumping, transportation, storage, etc.

The measurement of thixotropic behaviour for solid materials is especially for dewatered sludges like sewage, waterworks and related sludges relevant. By dewatering and storage the sludge will become solid. During operations such as transportation the sludge is getting due to the vibration of e.g. a truck in a liquid state.

The piling behaviour evaluation is for dewatered sludge, particular treated bio-waste and soil of importance. The determination of the piling angle is a useful instrument to characterise the storage properties and calculate the space, which is needed for e.g. storage and transportation of the above materials. Together with the thixotropic behaviour the piling behaviour refers to the compaction and stability.

However, the development of reliable measurement procedures of all parameters is not a simple matter, because measurements are influenced by below described properties or characteristics. This means that those factors must be considered with great attention and methods defined by avoiding any negative interference with them during measuring procedures. For this reason, it is first necessary to select, if any, the most adapted standards or non-standardised methods applicable to sludge, treated bio-waste and soil, or to develop a new one, and then to carry out parallel tests to evaluate how they are affected by the other specific characteristics. In addition, these aspects require to be investigated for both laboratory methods, to be adopted as a reference, and simple tests to be applied in the field.

1.4.2 Material characteristics

1.4.2.1 Sewage sludge

Sewage sludge can be produced from several processes (primary sedimentation, activated sludge process, aerobic or anaerobic digestion etc.). Their solid content cover a wide range from 1 to 30%, while different total volatile solids percentage on dry matter can vary from 75% to 45%. The presence of coarse particles is strongly related to the sieve adopted in head-works or external material used in some processes (anaerobic co-digestion, etc.). Sewage sludge covers a wide range of physical state from liquid to solid. Bibliography does not offer a characterization of particle size distribution of sewage sludge, a wide range of these characteristics is forecasting in relation to the process adopted (opening of sieves etc.) and different type of sewage sludge treated. Some indications are found for sewage sludges (see Table 1 [1]).

			TS basis	;	TVS basis			
Material Process		% cumu	lative reta	ined w.w.	% cumulative retained w.w.			
		5 mm	2 mm	0.84 mm	5 mm	2 mm	0.84 mm	
Sewage sludges	Aerobic	0	3,7	9,4	0	4,7	8,4	
WTS	process							
Mixed primary	Mesophilic	0	10,5	18,5	0	15,5	30,5	
sludges	anaerobic							
ADS	digestion							

 Table 1: Particle size distribution of sewage sludges

Each kind of sludge was analysed for its particle size distribution by wet sieving, using three sieves with openings of 5,2 and 0.82 mm. According to these data the samples can be divided into four conventional classes: coarse (>5 mm), medium (from 5 to 2 mm), medium-fine (from 2 mm to 0.84 mm) and fine (<0.84 mm). It can be noted that the sewage sludges have no coarse particles but a different percentage of medium and fine particles.

The most diffuse sludge characterization is that rheological, beside CST – capillary suction time, R specific resistance to filtration etc.. Rheological parameters (yield stress, viscosity and thixotropy) were originally applied to calculation of the head losses in sludge pumping operations, recently it has been shown that they can affect filtration, thickening [2], pumping [3, 4] and constitute useful on line control parameters for sludge conditioning and dewatering [5, 6, 7].

Rheological measurements of sewage sludges have been performed using commercial rotational viscometer. The rheological properties normally determined by using the Bingham plastic model are the yield stress (YS) (that is the stress required to start the material flowing) the plastic viscosity (that is the internal resistance to flow under defined shear rate). The Thixotropy, determined by the hysteresis area, is only sometimes observed (Table 2) [8].

Sludge	Process	TS range	TVS/TS	YS	Plastic viscosity
		%		Ра	mPa*s
Mixed		3.0-14	0.52	1.90-185	30-630
Primary		7.0-16	0.43	1.0-49	20-320
Activated		3.0-9	0,73	5.0-214	70-1110
Mixed Sludges	Aerobically	4.0-10	0.53	0.07-58	10-410
	stabilized				
Mixed Sludges	Anaerobically	4.0-9	0.59	1.0-112	20-390
	digested				
Mixed sludges	Mesophilic	3.5-5.0	0.5-0.6	0.4-1.6	8.0-24
	anaerobic				
	digestion				
Mixed sludges	Thermophilic	3.5-5.0	0.5-0.6	0.1-0.5	11.0-17
	anaerobic				
	digestion				

Table 2: Rheological properties of sewage sludges

Mechanical properties of sewage sludge in solid state were studied with the aim to define the feasibility of landfill disposal; a correlation between shear strength and dry solid matter for sewage sludge was done using a Vane apparatus (Fig. 1) [9], sludges are suitable for landfilling if their shear strength is of 10 kN/m^2 at least (limit value in Italy).

Fig. 1: Collation between shearing strength and dry solid method [9]

1.4.2.2 Waterworks sludge

In DVGW W221-1 [10] sludges are defined as solid-water suspensions capable of flowing after sedimentation, flotation or thickening. Dewatered sludges are sludges, which were dewatered by natural or mechanical treatments until they are no longer able to flow.

Sludges from water treatment contain several phases differing by their physical state and/or chemical nature. The space distribution of these phases, as well as the physical-chemical interactions between them, gives to sludges their cohesion. A too low cohesion of sludges and/or its high fluctuation in the time commonly generates handling (shovelling- and spreading-ability) and storing difficulties.

An orderly utilisation and disposal of waterworks sludges need the control of the mechanical properties in order to ensure a quality that is demanded for storage, transport and handling. The mechanical measurements are to be seen and done in connection with other measurements that have been or will be standardised. There are to be mentioned methods for chemical and physical parameters (chemical elements, dry solids, loss on ignition, pH-value) and operational methods (capillary suction time CST, specific filtration resistance). The different composition of waterworks sludges with inorganic (Fe, Ca, Al etc.) and organic (Algae, humid substances, powdered activated carbon etc.) substances depending on the source of raw water and water treatment processes must be considered. An inquiry from *Wichmann et al (2002)* [17] showed, that the waterworks sludges of different types in Germany amounted in 1998 to ca. 181.000 t DS (Lime sludge 40%, Iron sludge 14%, Fe-/Al-Flocculation sludge 13% and other 33%).

Parameter	Fraction [g/kg DS] (Fictive value)	Conversion in:	Fraction [g/kg DS]
Acid insoluble	40	Insoluble components	40
$(= HCl_{ins.})$		(e.g. sand, activated carbon)	
TOC	30	Total organ. content	60
		(Factor: 2)	
Mn	20	MnO_2	31.6
		(Factor: 1.58)	
Mg	5	$Mn(OH)_2$	12.0
		(Factor: 2.,4)	
A1 20		$Al_2O_3 \ge H_2O$	44.4
		(Factor: 2.22)	
SO_4	5	$CaSO_4$	7.1
		(Factor: 1.42)	(Ca: 2.1)
$CO_3 (= TIC)$	80	$CaSO_3$	138.6
		(Factor: 1.67)	(Ca: 57.6)
Ca –total-	65		-
Residual-Ca	5.3	$Ca_3(PO_4)_2$	13.7
		(Factor: 2.58)	(PO ₄ : 8.4)
PO ₄ -total-	10		-
Residual-PO ₄	1.6	Fe(PO ₄)	2.5
		(Factor: 1.59)	(Fe: 0.94)
Fe -total-	415,7		-
Residual-Fe	414.8	Fe ₂ O ₃ x 1,5 H ₂ O	692.6
		(Factor: 1.67)	
Total			1042.5

The composition of the sludge can be determined after [11] (10 parameters) in Table 3.

 Table 3: Determination of the composition of sludge

The range of 0.2 to 80 % dry solids contents of waterworks sludges to be utilized is quiet wide, so that several different mechanical properties have to be measured. Possible measuring methods are coming mainly from the soil mechanical or rheological working fields. There are only few data on mechanical properties of waterworks sludges published. In Fig. 2 after *Mc Tigue et al.* (1990) [12] e.g. the result of 72 measurement data of different waterworks sludge types and dewatering processes are shown. A laboratory vane shear apparatus was used. The vertical line marks the dry solids concentration of 35 % that was given from *LAGA* (1979) [13] as a minimum value for disposal of wastes in landfills. Sludges with more than 35 % DS were than be considered to be qualified for landfilling. The horizontal line marks the minimum value of 25 kN/m² for the vane shear strength that is now demanded from new regulations in the *TA Siedlungsabfall* (1993) [14]. Approximately 90 % of the waterworks sludges tested after mechanical dewatering could not fulfil the required minimum value.

Fig. 2: Comparison dry solid contents vs. laboratory vane shear strength [12]

1.4.2.3 Treated bio-waste

Organic fraction of municipal solid waste (OFMSW) is utilized for anaerobic and composting treatment. Anaerobic digestion or co-digestion with sewage sludges is a well-known process where rheological parameters have been studied to control process.

			TS basis	5	TVS basis		
Material	Process	% cumulative retained w.w.			% cumulative retained w.w.		
		5 mm	2 mm	0.84 mm	5 mm	2 mm	0.84 mm
Fresh mechanically	Mesophilic	8,2	11,1	18,3	6,7	21	23,5
sorted (F) OFMSW	anaerobic						
	digestion						
Pre-composted	Mesophilic			19,7			26,1
mechanically sorted	anaerobic						

(P) OFMSW	digestion						
Blend of source sorted and	Mesophilic anaerobic	6,6	11,5	18,3	12,7	16,8	24,2
mechanically sorted	digestion						
OFM2 W							

Table 4: Particle size distribution of OFMSW

The OFMSW was analysed for its particle size distribution by wet sieving, using three sieves with openings of 5, 2 and 0.82 mm. According to these data the samples can be divided into four conventional classes: coarse (>5 mm), medium (from 5 to 2 mm), medium-fine (from 2 mm to 0.84 mm) and fine (<0.84 mm). The fresh mechanical sorted OFMSW show up to 18 and 24% of particles greater than fines for TS and TVS, respectively. The coarse particles are mainly extraneous materials (plastics, baggage, etc.), which have no influence on digester fluid-dynamic [21, 22].

Rheological measurements of OFMSW aerobically and anaerobically treated have been performed using commercial rotational viscometer. The rheological properties normally determined by using the Bingham plastic model are the yield stress (YS) (that is the stress required to start the material flowing) the plastic viscosity (that is the internal resistance to flow under defined shear rate). The Thixotropy, determined by the hysteresis area, is only sometimes observed (Table 5) [21, 22].

Sludge	Process	TS range	TVS/TS	YS	Plastic	Thixo-
					viscosity	tropy
		%		Ра	mPa.s	Pa/s
OFMSW	Thermophilic	4.8-32.7	0.43-0.49	0.4-63	9-840	
mechanically	anaerobic digestion					
sorted and pre-						
composted						
Fresh OFMSW	Thermophilic	6.8-25.2	0.47-0.50	0.1-102	17-1660	
mechanically	anaerobic digestion					
sorted						
OFMSW	Thermophilic	5.8-35.1	0.46-0.56	0.2-61	6-560	
mechanically	anaerobic digestion					
sorted enriched						
with source						
sorted fraction						
OFMSW	Anaerobically	4.4-18	0.52	0.25-1.2	8.0-54	12-125
	digested under					
	mesophilic and					

	semi-dry conditions					
OFMSW	Anaerobically	5.0-32.7	0.48	0.26-37.7	10-420	36-161
	digested under					
	thermophilic and					
	semi-dry conditions					

Table 5: Rheological properties of OFMSW aerobically or anaerobically treated

Treated bio-waste includes also compost, which is derived from aerobic decomposition of recycled plant waste, bio-solids, fish or other organic material. It is a mixture of decaying organic matter, as from leaves and manure, used to improve soil structure and provide nutrients.

The sizes of compost pieces can vary within a wide range according to the type of compost e.g. organic municipal waste. From there the sampling and especially the pre-treatment are of great importance. For reliable measurements the grain size has to be uniform. If needed, the material has to be also compacted in order to avoid voids of higher dimensions, which could influence the results.

1.4.2.4 Soil

Soils are particulate systems and can cover a wide range of physical state from liquid to solid, depending mainly on the size and mineralogy of the particles and on the water content. In particular, soils are divided into coarse-grained soils and fine-grained soils. The surface of the particles has a negative electrical charge, whose intensity depends on the soil mineral. These surface forces exist in addition to the volume forces of the particles and in fine-grained soils they play a dominant role in the mechanical and rheological behaviour. The surface forces strongly depend on the water content and more in general on the chemical composition of the interstitial fluid.

For this reason, it is very important to set up standards that can define different physical states considering not only the water content but also the chemical composition of the pore fluid. The classification of a granular soil is completely defined by the grain distribution curve, the shape of particle and its specific volume. Whereas the procedure for particle size analysis is well defined and easy to perform (by a simple sieve analysis), a procedure for characterising the particle shape is not available and it should be defined as the particle shape strongly influence the mechanical behaviour of these type of soils.

The behaviour of cohesive soils depends on its mineral composition, the water content, the degree of saturation and its structure. A fine-grained soil can be in a liquid, plastic, semi-solid or solid state, depending on its water content and this physical state is called consistency. The upper and lower limits of water content within which a clay element exhibits plastic behaviour are defined as liquid limit and plastic limit. The procedure is standardised (*ASTM D4318*) but it is recognised to be strongly affected by the operator experience. Typical values of liquid limit for natural fine-grained soils range from 40% up to 90% of water content and the plastic limit from 10%-50%. Many correlations have been proposed relating the mechanical characteristics of cohesive soils and the consistency limit; each of them is valid for the specific type of soil for which it was verified. Table 6 gives an overview of several grain distributions of different standards. The last one (British Standard) is also valid for Germany e.g. and other European countries.

Table 6: Grain size of soils according to different classification systems

1.5 Search for existing Standards and Methods

The first action carried out is consisted in searching for existing standards and non-standardised methods to be possibly used or adapted for utilisation in the specific field of *consistency* evaluation.

To this purpose, the following standardisation organisations were contacted:

- ISO at <u>www.iso.ch</u>
- ASTM at <u>www.astm.org</u>
- **CEN** at <u>www.cenorm.be</u>
- UNI at <u>www.uni.com</u>
- **DIN** at <u>www.beuth.de</u>
- **AFNOR** at <u>www.afnor.fr/portail.asp</u>
- BSI at <u>www.bsi.org.uk</u>
- ASAE at <u>http://webstore.ansi.org/ansidocstore/default.asp</u>

Other information was obtained through personal contacts with experts in the field. In addition, to obtain selected information, the following keywords were used for research in each web site (among other things): *consistency, viscosity, flowability, shearing, sludge, soil, physical properties, flow properties, suspensions, and compactibility.* The different materials resulted from the research were resins, plastic, lubricant, cement, asphalts/bitumen, etc.

The complete list of standards is reported in Annex 1, from which it can be seen that more than 250 standards and non-standardised methods are potentially applicable to consistency evaluation.

1.6 Basic informations

1.6.1 Solidity

Solidity is the state in which a substance has no tendency to flow under moderate stress, resists forces (such as compression) that tend to deform it, and retains a definite size and shape. It describes the consistency of a solid resp. the limit solid/ paste-like.

For determination of solidity besides the resistance to pressure, the flexural resistance and tensile strength the "undrained shear strength c_u " (compare Eq. 2) is an important parameter. Shear may be defined as the tendency of one part of e.g. a soil mass to slide with respect to the other. This tendency occurs on all planes throughout the soil mass. The singular plane of interest, however, is the plane of potential failure, called the plane of rupture. Shear strength, as measured along this plane of interest, is the ability of the mass to resist the occurrence of a shear failure between the soil above and below the plane. Masses, e.g. soils have the ability to develop strength in shear. Different material groups develop this strength in different ways.

Generally the cohesion (c), as defined by the Geotechnics, has to be determined on basis of the evolution of the shear strength (τ) as a function of the applied axial strength (σ) using the Coulomb rule:

 $\tau = c + \boldsymbol{\sigma} \cdot \tan \varphi$

(Eq. 1)

where φ is the angle of shearing resistance or friction angle. For sludges it has been observed that φ is near zero (*Costet and Sanglerat, 1975* [24]). For this reason it is reasonable to equal τ and c (see Eq. 2). Furthermore, several authors (*Gazbar, 1993* [25]; *Tisot et al., 1997* [26]) considered that the yield stress (the stress above which the sludge is deformed) is equal to τ .

$$\tau_f = c_u \tag{Eq. 2}$$

where c_u is the undrained cohesion or the undrained shear strength.

The ability of a mass to support vertical loads and to resist the sliding effect of lateral loads is governed to a large extent by the shear strength of the material. It is therefore important to determinate accurately the shear strength of mass situated beneath and in close proximity to the proposed construction. There are several field and laboratory tests by which shear strength can be determined with reasonable accuracy: Triaxial compression tests, vane shear tests or direct shear tests. Besides the determined as twice the undrained shear strength (Eq. 3), and the "California bearing ratio" are important parameters.

$$q_u = 2 \cdot c_u \tag{Eq. 3}$$

Penetration apparatuses are also being suitable for measuring the consistency resp. shearing strength, which is determined in this case with the aid of a constant depending on the dimensions of the cone tip (see chapter 4.1.1, Eq. 7).

In general the tension or compression tests consist in measuring the strain in relationship to the applied stress. From a conventional stress-strain curve (Fig. 3) it can be identify four different ways, in which the material behaves, depending on the induced strain [27]:

- Elastic behaviour: when the load acting on the material is removed, the sample returns to its original shape, (the stress is proportional to the strain),
- Yielding: a slight increase in stress above the elastic limit induces a breakdown of the material and cause it to deform permanently,
- Strain hardening: while the material is sheared, the deformation is permanent and there is no proportionality between the stress and the stress,
- Necking: a crack occurs in a localized region.

Fig. 3: Schematic stress-strain curve of solid materials [28]

1.6.2 Thixotropic behaviour of solid materials

Thixotropy or thixotropic behaviour is available, when the viscosity of a substance (shear rate $\dot{\gamma} = \text{const.}$) decreases with the time, but after a defined period of rest the initial value of the viscosity is reached again (Fig. 4, [29]). The reasons for this behaviour are special formed chem./phys. bonding forces, which influence the relocatability against each other of those components and which are destroyed by the shear strain and during the non-operated time are complete reversible regenerated. Distinctive thixotropic properties are founded e.g. for solid materials with polar surface in covalent matters.

Fig. 4: Thixotropy in viscosity-time-graph ([29] modified)

Fig. 5: Thixotropy in flow curve graph and viscosity curve ([30] modified)

When the increasing curve in the flow curve graph (Fig. 5, left, I) is located above the decreasing curve (II), this behaviour is called thixotropic. The received Hysteresis area is a degree of intensity of the constructiveness forces (e.g. structure of gel). In general this area is termed "A" and has the unit "power" related to the sheared volume. If the power is multiplied by the shear time (I+II) the "work" is resulted, which is necessary in order to destroy the thixotropic structure of the bonding forces in the substance volume [30]:

$$A = \tau \cdot \dot{\gamma} \qquad \left[Pa \cdot \frac{1}{s} \right]$$
$$A = \frac{N}{m^2} \cdot \frac{1}{s} = \frac{N \cdot m}{s} \cdot \frac{1}{m^3}$$
$$A = \frac{\text{work}}{\text{sheartime}} \cdot \frac{1}{\text{volume}} = \frac{\text{power}}{\text{volume}}$$

Beside the time-depended reduction of the viscosity (with a constant shear rate) there does exit a decrease of viscosity due to intensity of the shear rate (Fig. 5, right).

If a material is anti-thixotropic, the position of the increasing curve in the flow curve graph is below the decreasing curve. This aspect is called "rheopexy" or also negative thixotropy. In practise it means the material is getting solid during the time of shear stress [29]. However, in this report only materials with a thixotropic behaviour are considered. In particular the value "shear strength", which is mostly determined for the parameter "solidity", is observed, whether it falls below the given threshold - because of shear stress - or not.

Also waterwork and sewage sludges often show thixotropic behaviour. During shear stress the sludges change from the solid to the liquid state, which may hinder the utilization of the sludges during transport and handling. It must be ensured that dewatered sludges are not fluidized during transport and handling. Therefore it must be measured whether the material is behaving thixotropic and if so under which conditions.

1.6.3 Piling behaviour

The materials of interest (sludge, treated bio-waste and soil) usually have to be stored during transportation or storage in e.g. piles or containers. To avoid problems with succeeding handling operations the pieces of these materials should undergo no major changes in form and consistence. From there it is of great importance to investigate the piling behaviour, which is displayed by the Horizontal materials.

The "compactibility" or "compressibility" is a first supporting parameter for determination of the piling behaviour. These parameters could give informations about how much a stratum of piled material can settle due to the loading of the material placed above.

The measurement of the "piling angle (angle of rest)" or "slope angle" is also a very helpful parameter to determinate the piling behaviour [48]. It is a new method, which is still in a development stage, but due to the easy measurement procedure and variability (compare chapter 3.3 et seq.) a promising tool for the investigation of all materials of interest. The instrument for measuring these parameters consists of a simple box with turnable sidewalls. After filling the box - where necessary compacting the material – and the sidewalls were turned over, the natural slope angle of the remaining material can be measured on each side of the sample remaining on the box base. Because of the average of four values the result are mostly reliable. A further important aspect is that the friction between the sidewalls and the material to be tested does not affect the final result.

2. EXISTING STANDARDS OR DRAFT STANDARDS

The research of existing and draft standards to be utilized as laboratory and field methods for Horizontal standardization has been carried out in cooperation of the teams involved in WP7 by consulting the web sites of standardization boards (cp. section 1.5). Besides these standards some non-standardised methods, which are also used in practice, were acquired. The keywords used for the research have included the possible field and relevant properties for which the standards may be applicable. The expert's of WP7 has submitted titles to a preliminary examination and the selected standards (considered for further discussion) have been acquired. They can be divided generally in to four parameter groups: flowability, solidity, thixotropic behaviour and piling behaviour.

2.1 Flowability

Keywords beside the item flowability:

- ➢ Bitumen
- Cement/concrete
- Consistency
- Plasticity
- Plastics
- Sludge (sewage)
- Soil
- Slurry
- > Thixotropy
- > Viscosity
- ➢ Waste (solid)

In this group 128 standards and non-standardised methods have been found and 90 standards and non-standardised methods have been considered for further discussion.

2.2 Solidity

Keywords beside the item solidity:

- > Cement
- > Concrete
- ➢ Cone
- Consistency
- Mechanical properties
- Needle
- Penetrometer
- > Plasticity
- Road materials
- Shearing strength
- Sludge (sewage)
- Soil
- Soil properties
- Vane
- ➢ Waste (solid)

In this group 68 standards and non-standardised methods have been found and 32 standards and non-standardised methods have been considered for further discussion.

2.3 Thixotropic behaviour

Keywords beside the item thixotropic behaviour:

- Cementitious & concrete materials
- > Concrete
- > Consistency
- Fluidity
- Penetration ball
- Road material
- Sludge (sewage)

In this group 15 standards have been found and 9 standards have been considered for further discussion.

2.4 Piling behaviour

Keywords beside the item piling behaviour:

- ➢ Cement
- Cementitious & concrete materials
- ➢ Concrete
- Consistency
- > Flowability
- > Oedometer
- Piling box
- > Plasticity
- > Soil
- ➢ Waste (solid)

In this group 13 standards and non-standardised methods have been found and 8 standards and non-standardised methods have been considered for further discussion.

The list of the collected titles is reported in Annex 1. The list of standards considered for further discussion is presented in chapter 3.

3. EVALUATION OF DRAFTING A HORIZONTAL STANDARD

On the basis of the selected list of standards and non-standardised methods for further consideration the methods for the determination of solidity, thixotropic behaviour and piling behaviour of sludge, treated bio-waste and soil have been divided into several groups, according to the instruments used for measuring:

3.1 Solidity

- Shearing apparatus
- Vane testing apparatus
- Penetrometers

3.1.1 Shearing apparatus

The shearing apparatuses in this section include among other things the apparatuses for direct shear tests, triaxial compression tests and for tests for determination of unconfined compression strength.

3.1.1.1 Standards analysed

The examined standard methods for the determination of solidity of different substances by shearing apparatus are reported in Table 7:

Method	Material	Para-	Appara-	Standard	Physical	Utility/ field	Evaluation
		meter	tus	range	meaning/purpose	-	
ASTM D3080-98	Soil	Consolid	Shear	Normal	1. Wetting and		Considered
Standard Test	material	ated	device,	stress,	draining of the test		and found
Method for Direct		drained	shear box,	moisture	sample (normal		not
Shear Test of Soils		shear	porous	environment	stress); 2. Displacing		appropriate
Under		strength	inserts,	(field	one frame horizontally,		
Consolidated			loading	conditions)	measuring the		
Drained Conditions			devices,		shearing force and		
			etc.		horizontal		
					displacement		
ASTM D5311:	Saturated	Cyclic	Triaxial	Pressure:	The cyclic strength of	Evaluating	Considered
1992 (1996)	soils in	strength	equipment	usually 100	a soil is evaluated	the ability of	and found
Standard Test	either			kN/m²	relative to a number of	a soil to	not
Method for Load	undisturbe				factors, including: the	resist the	appropriate
Controlled Cyclic	d or				development of axial	shear	
Triaxial Strength of	reconstitut				strain, magnitude of	stresses	
Soil (cp. ASTM	ed states				applied cyclic stress,	induced in a	
D2850)					number of cycles of	soil mass	
					stress application,	due to	
					development of excess	earthquake	
					pore-water pressure,	or other	
					and state of effective	cyclic	
					stress	loading	
ASTM D6243:	Geosynthe	Internal	Shear		This Test Method		Considered
1998	tic Clay	and	Device;		measures the total		and found
Standard Test	Liner	Interface	Normal		resistance to shear		not
Method for	(GCL)	Shear	Stress and		within a GCL or		appropriate
Determining the		Resistan	Shear		between a GCL and		
Internal and		се	Force	_	adjacent material. The		
Interface Shear			Loading		shear force is recorded		
Resistance of			Device		as a function of the		
Geosynthetic Clay			and other		horizontal		
Liner by the Direct			miscellane		displacement of the		
Shear Method			ous lab.		moving section of the		
			equipment		shear box.		

Table 7: Standards for shearing apparatus

3.1.1.2 Laboratory or field test feasibility

Most of these tests are performed in the laboratory, because the shear devices often require in parts large space, thermostatic conditions, special force loading devices, which need electrical power, etc.

3.1.1.3 Apparatus

The tests examined use the following types of shearing apparatus:

- Shear devices (shear box) (Fig. 6)
- Triaxial equipment (Fig. 7)

Fig. 6: Test samples in single and double shear (shear box) [32]

Fig. 7: Triaxial compression test showing test pressure and assumed plane of failure AB [33]

3.1.1.4 What is measured and how

For the determination of shear strength by <u>direct shear test</u> described in *ASTM D3080* first moisten and drain the test sample under normal stress. Then unlock the frames that hold the test sample, and displace one frame from the shear device (shear box) horizontally and measure the shearing force and horizontal displacement.

For the determination of the <u>load controlled cyclic triaxial strength</u> described in *ASTM D5311* a number of factors have to be consider. It is a very expensive procedure to determine the shearing strength (ASTM D2850). That is why this test method will be discussed no further.

The test method for determining the shear resistance of <u>Geosynthetic clay liner</u> (GCL) described in *ASTM 6243* measures the total resistance to shear within a GCL or between a GCL and adjacent material. The shear force is recorded as a function of the horizontal displacement of the moving section of the shear box.

3.1.1.5 Material to be examined

The tests are mainly employed for the following materials

- Soil material (e.g. saturated soils in either undisturbed or reconstituted states)
- Lime treated material
- Geosynthetic clay liner (GCL)

In general the materials are in solid forms.

3.1.1.6 Feasibility of the methods to the materials for the Horizontal project

In these existing standards only soil materials are investigated. For application to other materials like sludge or treated bio-waste these materials must have a certain threshold of the consistency to produce reasonable results. For solid material, however, the shearing apparatus can be a reliable laboratory reference method to determinate the shear strength and thus the consistency. Especially the direct shear test method is suited for relatively rapid determination of consolidated drained strength properties, because the drainage paths through the test sample are short, thereby allowing excess pore pressure to be dissipated more rapidly than with other drained stress tests.

As the methods have to be suitable for the whole range of materials and not only for soil materials the shearing apparatuses seem not appropriate for the Horizontal-Project.

3.1.2 Vane testing apparatus

Vane testing apparatus are used to measure the vane shear and determine the shearing strength of compact materials like direct shear test or triaxial compression test. For the investigated materials it is important that these materials are cohesive, because otherwise no shearing strength occurs.

3.1.2.1 Standards and non-standardised methods analysed

The examined methods for the determination of solidity of different substances by vane testing apparatus are reported in Table 8:

Method	Material Para- Appara- Standard		Physical	Utility/ field	Evaluation		
		meter	tus	range	meaning/purpose	-	
ASTM D2573: 2001 Standard Test Method for Field Vane Shear Test in Cohesive Soil	Soft, saturated, cohesive soils	Shear strength of soil	Four bladed vane	-	Determination of the torsional force required causing a cylindrical surface by the vane; this force is then converted to a unit shearing resistance of the cylindrical surface.	Testing shear strength of clayey soils for engineering design and construction	Considered and found not appropriate
ASTM D4648: 2000 Laboratory Miniature Vane Shear Test for Saturated Fine- Grained Clayey Soil	Saturated fine- grained clayey soil	Shear strength	Vane blade Vane device with torque measuring system	Applied torque: 60- 90°/min	Determination of torque required causing a cylindrical surface to be sheared by vane. The torque is converted in shear resistance by a calibration constant. (Method A: Conv. calibr. torque spring unit. Method B: electrical torque transducor unit)	Testing consistency and shear strength of clay soils for engineering design and construction.	Considered for further investigation

DIN 4094-4-2002-	Saturated	Consiste	Shear	Consistency	Determination of	Testing	Considered
01	fine-	ncv:	vane	$0 < l_{c} < 1.0$	torque required	shear	and found
Subsoil - Field	grained		apparatus	(paste-like	causing a cylindrical	strength of	not
testing - Part4:	soils (clay,		(four	(pulpy)/solid(surface to be sheared	saturated,	appropriate
Field vane test	silt and		bladed	stiff))	by vane.	fine-grained	
	organic		vane)	Soft soils:	-	soils for	
	soils (DIN			major vane;		engineering	
	4022-1,			stiff soils:		design and	
	DIN			minor vane		construction	
	18196);						
ATV- Work report/	Sludges	Vane	Laboratory	Cohesive	Determination of	Investigation	Considered
ATV-Arbeitsbericht	-	shear	vane	materials	horizontal torque by	of sludges	for further
[23]		strength	shear		the angle of rotation	for	investigation
			apparatus		indicated by the	landfilling/dis	
					apparatus and then	posal	
					converting the torque		
					into a shearing		
					strength with the aid of		
					a spring constant.		
Mechanical	Waterwork	Vane	Pocket		Measuring of a value,	Investigation	Considered
properties of	s' sludges	shear	vane		which is converted to a	of	and found
waterworks'		strength	shear		shearing strength with	mechanical	not
sludges – Shear			apparatus,		the aid of a constant:	properties of	appropriate
strength [15]			several	-	The manufacturer of	waterworks'	
			vanes of		the apparatus has	sludges	
			different		given scaling factors to		
			sizes		transform the		
					measured values to		
					shearing strength.		

Table 8: Standards and non-standardised methods for vane testing apparatus

3.1.2.2 Laboratory or field test feasibility

In general vane shear tests are applicable for both laboratory and field test. There are simple apparatus for measuring in the field and special apparatus for vane shear tests as laboratory reference. The laboratory apparatus can be driven by electric power or manually.

3.1.2.3 Apparatus

The tests examined use the following types of vane testing apparatus:

- Shear vane apparatus (four bladed vane; in situ; Fig. 8)
- Vane device with torque measuring system (laboratory miniature vane; Fig. 9)

Besides these apparatuses another types of apparatuses, which are not reported in the standards, but may be considered as a promising tool to test the solidity of the analysed materials - like concentrated sludges e.g.-, are the following apparatuses:

- Laboratory vane shear apparatus (Fig. 10)
- Pocket vane shear apparatus (Fig. 11)

Fig. 8: Vane shear apparatus and geometry of field vanes [33, 34]

Fig. 9: Vane torque spring, electrical transducer details geometry and miniature vane blade geometry [35]

Fig. 10: Laboratory vane shear apparatus [23]

Fig. 11: Pocket vane shear apparatus [15]

3.1.2.4 What is measured and how

<u>Vane shear testing</u> described in *ASTM D2573* and *DIN 4094-4* is one of the most common insitu methods for the estimation of the undrained shear strength of the soil. The vane is introduced into the borehole to the depth where the measurement of the undrained shear strength is required. Then it is rotated and the torsional force required to cause shearing is calculated.

The <u>Laboratory miniature vane shear test</u> described in *ASTM D4648* may be used to obtain estimates of the shear strength of fine-grained soils. The vane assembly shall consist of four rectangular blades. The vane inserted in a cylindrical tube containing the sample that is rotated at a constant rate of 60 to 90°/min by a motorised vane device.

HORIZONTAL - Report No. 22

A torque transducer measures the torque required to cause a cylindrical surface to be sheared by the vane. The torque is then converted to a unit shearing resistance (Pa) of the cylindrical surface area by means of a vane blade calibration constant.

For determination shearing strength by <u>laboratory vane shearing apparatus</u> described in the *ATV-Arbeitsbericht (1989)* [23] first prepare the sample (e.g. *after DIN 18127 (1997)* [31]): The material – in this case sludge e.g. – is filled into the small Proctor vessel in three equal portions and is compressed with ten knocks by the small Proctor hammer (2.5 kg weight). Then the horizontal torque form shearing the sample through the penetrated vane is determined. The vane consists of four rectangular blades. The vane apparatus, which is connected with the display over a torque spring, is manually or electrically rotated and the vane cuts a cylindrical sample. The torque is determined by the angle of rotation and the spring constant. When the sample shears, the angle of rotation and the applied max. torque is kept by the scale. The torque is then converted to a shearing strength with the aid of a constant.

<u>The pocket vane shear apparatus</u> described in the publication *Mechanical properties of waterworks' sludges* [15] has only a height of 82,5mm and does not need electrical power. Because of the small size this apparatus is capable for simple field tests. It consists of a shear apparatus with several vanes of different sizes, which can be applied for a wide range of materials. The pointer and carrier of the display indicate the value, which is converted to a shearing strength with the aid of a constant: The manufacturer of the apparatus has given scaling factors to transform the measured values to shearing strength. These factors are developed for soil measurements.

3.1.2.5 Material to be examined

The tests are mainly employed for the following materials

- Soft saturated, cohesive soils
- Saturated fine-grained clayey soils
- Saturated fine-grained soils (clay, silt and organic soils)
- Sewage sludges for landfilling
- Waterworks' sludges

3.1.2.6 Feasibility of the methods to the materials for the Horizontal project

In general the vane shear test is a test whose use is limited to the testing of cohesive materials and cannot be used on coarse-grained materials. For soil materials e.g. it is not suitable for clays containing any appreciable amount of silt or sand. Most of the materials, which should be investigated in the Horizontal project, have this property.

The described standards and investigations in the past [23, 15] showed the feasibility of the vane shearing test methods for cohesive materials like soils and sludges. For treated bio-waste and related wastes of interest further investigations are necessary.

3.1.3 Penetrometer

A lot of standard and non-standardised methods are provided for testing the consistency of a wide range of materials from fluid fresh mortars to solid soils by measuring the resistance to penetration of cylindrical, conical or spicular tips. The methods can also be used to establish a relationship between penetrometer resistance and water content of samples of identical materials.

3.1.3.1 Standards and non-standardised methods analysed

The examined methods for the determination of solidity of different substances by penetrometer are reported in Table 9:

Method	Material	Para-	Appara-	Standard	Physical	Utility / field	Evaluation
		meter	tus	range	meaning/purpose		
ASAE S313.2 (94)	Soil	Penetrat	Cone		Measuring of the Cone		Considered
ASAE S313.3 (99)		ion	penetromet		index: The force per		for further
penetrometer		CP	operated)		required to push the		Investigation
penetrometer		00	operated)		penetrometer through		
				-	a specified very small	-	
					increment of soil.		
					Values max be		
					reported as X kPa at		
ASTM C197 09	Hydraulic	Concieto	Vicat		T mm depth or []		Considered
Standard test	cement	ncv	Apparatus.	Temp. : 20 -	amount of water		for further
method for normal			Weights	27.5°C	required to prepare		investigation
consistency of			and	water:	hydraulic cement	-	-
hydraulic cement			Weighing	23±1.7°C;	pastes for testing		
			Devices	Procedure:			
				<30s			
ASTM C405-82	Thermal	Consiste	Penetratio	Sample	Measure the depth of	Estimation of	Considered
(1997) Standard practice	coments	ncy	Three	21-24°C	the spears 30s later	amount of	and iound
for estimating	Comonto		pointed	average	and take the average	water to be	appropriate
consistency of wet-			steel	difference <	depth of penetration of	used in	
mixed thermal			rods/spear	± 25.4 mm.	the three spears as the	mixing	
insulating cement			s)		measure of the	insulating	
					test	cement.	
ASTM C 807 - 99	Hydraulic	Consiste	Mod. Vicat		Time required to	Determinatio	Considered
Time of Setting of	Cement	ncy	apparatus		obtain the stipulate	n of the time	for further
Hydraulic Cement	Mortar			-	penetration of the	of setting of	investigation
Mortar by Modified					sample	cement	
VICAT NEEDIE	Soile	CBD	Booring	Max particle	Curves of Load	expansive	Considered
Standard Test	(pavement	(Californ	Ratio Test	sizes less	Penetration-relation		and found
Method for CBR	subgrade,	ia	Apparatus	than ³ / ₄ in.	Determination of the		not
(California Bearing	subbase	Bearing	(Loading	(19mm)	Water Content (D 698		appropriate
Ratio) of	and	ratio)	Machine,		or D 1557)	-	
Laboratory	base/cours		Mould,				
Compacted Solis	ematerial		disc. etc.)				
			Penetratio				
			n Piston				
ASTM D217-97	Lubricating	Consiste	Penetrome	Water or air	Determination of the	Measureme	Considered
(-82) Standard toot	greases	ncy	ter, Standard	bath: 25 \pm	depth, in tenth of a	nt of	for further
method for cone			Cone	drop for 5s	standard cone	worked	Investigation
penetration of			Cono	Classificatio	penetrates the sample	prolonged	
lubricating grease				n of	under prescribed	worked, and	
(Compare ASTM				Penetration	conditions of weight,	block	
D937)				(table) =>	time, and temperature	penetration	
				several			
ASTM D2884:	Heterogen	Yield	Magnesiu	42-60 mm of	Penetration of the	The yield	Considered
1993 (1998)	eous	stress	m	cone	cone after 5s.	stress is a	for further
Standard test	propellants		penetration	penetration	The yield stress is	measure of	investigation
method for yield	(gel and		cone and	at 25°C	calculated by the use	the forces	
Stress Of	emuision		cup		of a proper equation	required to	
propellants by cone	containing					maintain	
penetration method	0-70% soil					flow	
	additives)						
ASTM D3441-98	Soil and	Penetrat	Field cone		Penetration resistance	Engineering	Considered
Standard test	SOIT FOCKS	resiston	and friction		with depth during the	properties of	and found
quasi-static. cone		ce (end	penetromet		penetration of a	to design a	appropriate
and friction-cone		bearing	er		pointed rod into soil	construct. of	-pp. spirato
penetration tests of		and side	Mechanical	-		earthworks	
soil		friction)	and			and	
			electric			toundations	
			types			structures	
ASTM D5778-95	Subsurfac	Resistan	Friction		Cone tip projected	Evaluation of	Considered
Standard test	e soils at a	ce to	cone	-	area is commonly	site	and found
method for	slow,	penetrati	penetromet		referred to in	stratigraphy,	not

HORIZONTAL - Report No. 22

performing	steadv	on	er with		centimetres for	homogeneity	appropriate
electronic friction	rate	-	several		convenience. The	and depth of	
cone and			cone tips		values stated in each	firm lavers,	
piezocone					system are not	voids or	
penetration testing					equivalents; therefore	cavities, and	
of soils					each system must be	other	
					used independently of	discontinuitie	
					the other.	S	
ASTM D937-97	Petrolatum	Consiste	Penetrome	Temperature	Cone penetration is a	These	Considered
Standard test		ncy	ter, Cone,	: 25 ± 0.5°C	means of measuring	measureme	for further
method for cone		(empiric	Oven	(water bath)	with the firmness or	nts are	investigation
penetration of		al)	(sample	· · · ·	consistency of	useful for	_
petrolatum			preparation		petrolatum	selecting or	
)			specifying,	
						or both, a	
						petrolatum	
						of a	
						particular	
						consistency	
						or firmness.	
BS 2000-49:1993	Semi-solid	Consiste	Pene-	Normal	This consistency is		Considered
Methods of test for	and solid	ncy	tration	conditions:	expressed as the		for further
petroleum and its	bituminous		apparatus,	test	distance in tenth of a		investigation
products. Part49:	material		timing	temperature	millimetre that a		
Determination of			device,	25°C,	standard needle		
needle penetration			penetration	applied load	penetrates vertically	-	
of bituminous			needle,	100g,	into a sample of the		
material			water bath,	duration of	material under		
			etc.	loading 5s	specified conditions of		
					temperature, load and		
					duration of loading		
BS 3712: Part 1:	Sealants	Methods	Penetrome		The primary aim of	Providing a	Considered
1991		of test	ter,		these test methods is	body of test	for further
Building and		for	penetration		to enable the	methods	investigation
construction		penetrati	cones and		properties of sealants	suitable for	
sealants: Part 1.		on	needles		to be assessed and for	the wide	
Methods of test for					their quality to be	range of	
homogeneity,				-	controlled, particularly	sealants of	
relative density and					in relation to their	different	
penetration					compatibility with other	types and	
					materials and their	properties	
					suitability for	now	
					application to building	available on	
					joints.	the market.	
CEN 00227146	Hot	Consiste	Pene-	Test	Value: Depth to which		Considered
prEN	applied	ncy	trometer,	conditions:	a standard cone		for further
13880-2	joint	(cone	suitable	temperature	penetrates the test		investigation
Hot applied joint	sealants	penetrati	penetration	25±0.3°C,	sample under defined		
sealants – Part 2:		on	cone,	applied load	conditions of mass,	-	
lest method for the		value)	water bath,	150±0.1mg,	time and temperature		
determination of			etc	duration of			
cone penetration at				loading			
20 0				5±0.1s			
DIN 1168-2:1975-	Building	Beginnin	Vicat	Temperature	Measure of the		Considered
07	Plasters	g of	apparatus	18-25°C	duration (in minutes)		for further
Building Plasters;		stiffenin	with cone		the cone sticks at a	-	investigation
Requirements,		g	(form of a		defined depth		
resting, Control		0	needle)	-			<u> </u>
DIN 51580:1989-	Petroleum	Consiste	Penetrome	lest	Evaluation and		Considered
U4 Taatiaa (waxes	ncy	ter, Pene-	conditions:	qualification of the		for further
i esting of		(Cone	tration	temperature	usability for		investigation
petroleum waxes;		penetrati	Cone, etc.	25°C,	aetermined		
Determination of		on)		applied load	application.		
cone penetration				(weight of		-	
					millimetre.		
				duration of			
				loading			
				LO 10			
DO EN 4400 4000		Constat	Damatric	D±0.1S	Consistence		O a maisia a marti
DO EN 1426:1999	Ditumen	CONSISTE	renetrome	normal	Consistency,		Considered
bitumen and	and	псу	ter,	range:	expressed as depth in		for further
Determined Dinders	bindore		Penetratio		uchich o stand market		investigation
- Determination of	binders		n needle,	20°U,	which a stand. needle	-	
needle penetration			water bath,	applied load	anditiona		
			eic.	duration of	(temperature load and		
L			<u> </u>	uuralion Ol	numperature, iuau aliu		

				loading 5s. Penetration > 500x0.1: 15°C	duration of load) vertical in a sample relines.		
ISO/DIS 13765- 1:2001-12 Refractory mortars - Part 1: Determination of consistency using the penetrating cone	Refractory mortars	Consiste ncy	Penetrome ter, cone, container for the sample, etc.	Test conditions: applied load/mass of the cone 150±0.25g,	The consistency of a refractory mortar is assessed by the depth of penetration of a specified cone into the sample	-	Considered for further investigation
ISO 2137:1985-11 (DIN ISO 2137:1997-08) Petroleum products – Lubricating grease and petrolatum. Determination of cone penetration	Lubricating greases and petroleum	Consiste ncy	Penetrome ter, Cones (standard and optional, cp. range), etc.	Test conditions: temperature 25°C, duration of loading 5s	The distance that a standard cone penetrates into a test portion under standardized conditions of load, time, and temperature	Measure- ment of unworked, worked, prolonged worked, and block penetration	Considered for further investigation
ATV-Arbeitsbericht (ATV-Work Report) [23]	Sludges	Shear strength	Pocket penetromet er	-	After putting manually a force via a spring on the sample the penetration resistance can be read directly from the scale. With the aid of a nomogram (and a regression line) the shearing strength can be determined.	Investigation of sludges for landfilling/dis posal	Considered for further investigation
Geotester	Soils, water work sludges	Shear strength	Pocket cylinder penetromet er with several cylinders (plungers) of different sizes	-	Measuring the force required for shearing the material. (It is loaded in compression to failure). Calculating the stress by dividing the force by the surface area of the cylinder.	Subsoil; investigation of mechanical properties of waterworks' sludges	Considered for further investigation

Table 9: Standards and non-standardised methods for penetrometer

3.1.3.2 Laboratory or field test feasibility

Laboratory penetrometers are quite simple instruments, which could also be used for field tests as they do not request electric power supply and can operate at room temperature.

The field soil penetrometers are specific apparatus designed to supply data on engineering properties of soil and include cone and friction-cone penetrometers of both mechanical and electric types.

3.1.3.3 Apparatus

The tests examined use the following types of penetrometer:

- Soil cone penetrometer (Fig. 12)
- Vicat apparatus with different forms of needles (Fig. 13)
- Laboratory penetration tester with three pointed steel rods/spears (Fig. 14)
- Penetration piston, loading machine (CBR)
- Penetrometer, standard cone and other forms of cone tips (Fig. 15)
- Magnesium cone penetrometer for yield stress measurements (Fig. 16)
- Field soil penetrometer (Field cone and friction cone penetrometer)

Besides these apparatuses another types of apparatuses, which are not reported in the standards, but may be considered as a promising tool to test the solidity of the analysed materials - like concentrated sludges -, are the following apparatuses:

- Pocket penetrometer after Neuschäfer (Fig. 17) Pocket cylinder penetrometer (Fig. 18) _
- _

Fig. 12: Soil cone penetrometer [36]

Fig. 13: Vicat apparatuses [37]

Fig. 14: Apparatus for measuring consistency by penetration [38]

Fig. 15: Penetrometer with standard and optional penetration cone (dim. in mm) [39, 40]

Now 2—The total mass of the cone shall be 15.00 ± 0.05 g and the total mass of its movable attachments shall be 15.00 ± 0.05 g. Now 3—Table of Metric Equivalents

in.	min	in.	mm	in.	mm	in,	mm
0.014 0.016 Via 0.122 0.125	0.396 0.405 1.50 3.10 3.16	16 160 14 160 0.320	3.18 3.98 6.35 7.94 8.357	0.331 0.586 0.590 %6 136	8.407 14.894 14.935 15.83 28.575	1.136 1.156 2% 2.550 2.570	20.654 29.362 53.96 64.77 65.26

Fig. 16: Magnesium penetrometer cone [41]

Fig. 17: Pocket penetrometer after Neuschäfer [23]

Fig. 18: Pocket cylinder penetrometer [42]

3.1.3.4 What is measured and how

The <u>Soil Cone Penetrometer</u> described in ASAE S313.2/ASAE S313.3, which is operated by hand, has two cone base sizes. After selection the adequate cone is pushed into the soil at a uniform rate of approximately 30 mm/s. The surface reading is measured at the instant the base of the cone is flush with the soil surface. Marking on the shaft of the cone penetrometer indicates the depths. Five to seven readings should be taken to establish the cone index and to verify the presence of unique layers in the soil profile.

For determination of consistency by <u>Vicat apparatuses</u> described in ASTM C187, ASTM C807 and DIN 1168-2 first the sample is prepared. Contact the needle with the surface of the sample and then release the needle. For the standard ASTM C187 the paste shall be a normal consistency if the rod settles to a point 10 ± 1 mm below the orig. surface in 30s after being released. For the standard ASTM C807 the Vicat apparatus is modified and the preparation is much more complex. Settlement for 30s, then determine the penetration of the needle at this time and every 30 min until the needle fails to penetrate to the bottom of the mould (time of setting). In the standard DIN 1168-2 the duration (in minutes) the cone sticks at a defined depth is measured. The beginning of stiffening is reached if the needle remains in the sample at 18 ± 2 mm above the bottom. The duration is measured from the filling in the mould till sticking in the sample. The tips can also be in form of a plunger.

The <u>penetration tester</u> described in *ASTM C405* consists of three pointed steel rods resp. spears. After preparation of the sample release the spears by means of the electrical switch. Measuring the depth of penetration of each of the spears 30s later, and take the average depth of penetration of the three spears as the measure of the consistency for that test.

For the determination of the <u>California bearing ratio (CBR)</u> described in *ASTM 1883* use laboratory compacted samples. The test apparatus consists of a penetration piston and loading machine. Measuring of curves of load-penetration-relation and determination of the water content is performed.

For measuring the consistency with the (<u>standard cone) penetrometer</u> partly described in *ASTM D217, ASTM D937, BS 2000-49, BS 3712, prEN 13880-2, DIN 51580, DIN EN 1426, ISO/DIS 13765-1 and ISO 2137*, determine the depth, in tenth of a millimetre, that the needle or cone (in part several cone tips of different sizes) penetrates the sample under specific conditions of weight/load (~150mg-150g depending on the analysed material), time (fixed duration of ~5s), and temperature (~25°C); mostly classification of penetration range, e.g. 500x0.1mm.

The method for yield stress measurement of heterogeneous propellant makes use of a <u>standard</u> <u>magnesium cone penetrometer</u> described in *ASTM D2884*. This method is similar to the previous described methods. The penetration is determined at 25°C by releasing the cone-test

rod assembly from the penetrometer and allowing the assembly to drop for 5s. The cone will essentially be at the rest in less than this time, so the exact timing is not critical.

The yield stress is the measure of the maximum shear stress that can be applied without causing permanent deformation and is expressed in Pa. This value is calculated by measuring the cone penetration depth and by using a proper equation that takes into consideration the balance of involved forces.

In the standard test method for <u>deep</u>, <u>quasi-static</u>, <u>cone and friction-cone penetration tests of soil</u> described in *ASTM D3441* the end bearing and side friction component penetration resistance is measured, which are developed during the steady slow penetration of a pointed rod into soil. The apparatus uses both cone and friction-cone tips and may be mechanical or electric type. The mechanical penetrometer uses a set of inner rods to operate a telescoping penetrometer tips and to transmit the components of penetration resistance to the surface for measurements. The electric penetrometer uses electric-force transducers built into a non-telescoping penetrometer tip for measuring the components of penetration resistance. The results are reported as cone and friction-cone resistance expressed in 100 kPa with depth in metres.

In the same way operates the <u>standard test method for performing electronic friction cone and</u> <u>piezocone penetration testing of soils</u> described in *ASTM D5778*: A penetrometer tip with a conical point having a 60° apex angle and a cone base area of 10 or 15 cm² is advanced though the soil at a constant rate of 20mm/s. The force on the conical point (cone) required to penetrate the soil is measured by electrical methods, at a minimum of every 50mm of penetration. Stress is calculated by dividing the measured force (total cone force) by the cone base area to obtain cone resistance. A friction sleeve is present on the penetrometer immediately behind the cone tip, and the force exerted on the friction sleeve is measured by electrical methods at a minimum of every 50 mm of penetration. Stress is calculated by dividing the measured force by the surface area of the friction sleeve to determinate friction sleeve resistance.

The pocket penetrometer after Neuschäfer (CT-421) described in the *ATV-Arbeitsbericht* (1989) [23] has a diameter of ca. 2cm, a length of ca. 18cm and a weight of ca. 200g. Manually a force will be put via a spring on the sample. The penetration resistance can be read directly from the scale. For an exact determination several cones (adapters) according to the consistency of the investigated materials exist. The adapters have a relation diameter to height of 1:1. For determination of consistency three penetrations in the same sample are necessary. Then the penetrometer bearing is determined by a nomogram; the number of the cone size and the indicated value from scale are the input values. The penetration bearing is converted in this case by empirical regression line into a vane shearing strength.

The <u>pocket cylinder penetrometer</u> (Geotester) is originally capable for measuring the unconfined compression strength (cp. *ASTM D2166* and *ASTM D5102*), angle of internal friction ϕ and the cohesion C.

The sample is loaded in compression to failure: The force required for shearing the material is measured, it could be read directly from the scale. Stress is calculated by dividing the measured force by the surface area of the cylinder (plunger) to determinate penetration resistance. Like the penetrometer after Neuschäfer there do exist several cylinders of different sizes according to the consistency of the materials.

3.1.3.5 Material to be examined

The tests are mainly employed for the following materials

- Thermal insulating cements
- Hydraulic cement (mortar)
- Building plasters
- Refractory mortars
- Soil material (soil and soft rocks)
- Heterogeneous propellants (gel and emulsion type)

- Lubricating greases and petroleum
- Petrolatum
- Petroleum waxes
- Bitumen and bituminous binders
- Semi-solid and solid bituminous material
- Hot applied joint sealants
- Sewage sludges
- Waterwork sludges

3.1.3.6 Feasibility of the methods to the materials for the Horizontal project

The penetrometers and Vicat apparatuses designed to test the consistency can be used to test the solidity of substances like concentrated sludge, sludges at higher dry content or other materials as they may assume a paste-like or solid consistency.

The Penetration tester and the CBR method are not as suitable as the methods described before. The apparatus are specialised for the investigated materials like cement and soil respectively, therefore a modification for determination the consistency of the Horizontal materials could be much more complicated.

The cone and friction-cone penetration tests of described in *ASTM D3441* and *ASTM D5778* provide a good test method for determining the bearing capacity of soils. Most of the friction-cone apparatuses request electrical power and are due to their sizes not easy to handle. Therefore these test methods won't be further investigated.

3.2 Thixotropic behaviour of solid materials

For the determination of the thixotropic behaviour of solid materials especially for the Horizontal materials a standard method does not exist. From there it should be investigated a combination of methods for determination of the solidity like penetration, etc. and an energy-input in terms of "flow" apparatus to simulate the shear stress.

3.2.1 Standards analysed

The examined standard methods for the determination of thixotropic behaviour of different substances are reported in Table 10:

Method	Material	Para-	Annara-	Standard	Physical	Utility / field	Evaluation
linetinet	matorial	meter	tus	range	meaning/purpose	o tinty / nora	Lvalaalon
ASTM D 2196 - 81 Rheological Properties of Non- Newtonian Materials by Rotational Viscometer	Non- Newtonian liquids	Rheologi cal propertie s	Met. A: Brookfield viscometer Met. B: Brookfield viscometer Met. C: Brookfield viscometer	Shear rate 0.1-50 s ⁻¹ Shear rate 0.1-50 s ⁻¹ Shear rate 0.1-50 s ⁻¹	Apparent viscosity Shear thinning and thixotropy Shear thinning of sheared mat.	-	Considered and found not appropriate
3:2000 Testing fresh concrete. Vebe test	concrete	ncy	meter/ Consistom eter (container, mould, disc, vibrating table, etc.)	size 63mm; Vebe time: 5-30s. Moving assembly (rod, disc, weight) 2750±50g	taken for the surface of a disc to be fully in contact with the grout (Vebe time)	-	and found not appropriate
BS EN 12350- 4:2000 Testing fresh concrete. Degree of compactibility	Fresh concrete	Consiste ncy (Degree of Compact ibility)	Container, means of compactin g the concrete (internal vibrator, vibrating table), etc.	Max. particle size 63mm; Degree of Compactibilit y: 1,04-1,46	The concrete is compacted by vibration and the distance from the surface of the compacted concrete to the upper edge of the container is used to determine the degree of compactibility.	-	Considered and found not appropriate
BS EN 12350- 5:2000 Testing fresh concretePart 5: Flow table test	Fresh concrete	Consiste ncy	Flow table, mould, Compactin g bar, etc.	Not applicable to foamed concrete or no-fines concrete, max. aggregate size 63 mm	Measuring the spread of concrete (diameter) on a flat plate, which is subjected to jolting.	-	Considered and found not appropriate
BS EN 13395- 1:2002 Products and systems for the protection and repair of concrete structures. Test methods. Determination of workability. Test for flow of thixotropic mortars	Trowel- grade hydraulic cement mortars CC, polymer modified hydraulic cement mortars PCC, polymer bound mortars PC	Workabil ity (consiste nce)	Mortar mixer or concrete mixer, flow table and truncated conical mould, etc.	-	Measure of the spread (diameter) of a defined test sample when placed on a flow table, with the spread being achieved by a set number of jolts. (EN 1015-3)	Protection and repair of concrete	Considered and found not appropriate
CEN 00227124 prEN 13286-4 Unbound and hydraulically bound mixtures – Part 4:	Unbound and hydraulical ly bound mixtures	Laborato ry referenc e density and	Mould, detachable baseplate and removable	Contain not more than 30% by mass retained on	Mixture in CBR-type mould using an electrically powered vibrating hammer over a range of water	Application to mixtures used in road construction	Considered for further investigation

Test methods for laboratory reference density and water content - Vibrating hammer		water content (+relatio nship)	extension piece, Vibrating hammer (elec.),	the 20 mm sieve; not more than 10% by mass of the mixture retained on the 40 mm test sieve.	contents. The range includes the optimum water content at which the maximum dry density for the specified degree of compaction is obtained.		
CEN 00227125 prEN 13286-5 Unbound and hydraulically bound mixtures – Part 5: Test methods for laboratory reference density and water content - Vibrating table	Unbound and hydraulical ly bound mixtures (cohesionl ess material)	Max. dry density and water content	Vibrating table, moulds, Surcharge base plate, etc.	Up to 12% mass fines (< 0.063 mm), max. particle size of the materials to be tested is 80 mm.	The mixture is compacted in a mould by means of a load on the top of the mixture. The laboratory dry density and corresponding water content are determined.	Application to mixtures used in road material.	Considered for further investigation
DIN 1168-2:1975- 07 Building Plasters, Requirements, Testing, Control	Building Plasters	Among other things: Water- gypsum- value	Mixer, table, table, etc.	Temperature : 18-25°C;	Measure of the diameter of the water- building plaster- mixture after it has been spread by operation (several impacts) of the table.	-	Considered and found not appropriate
ISO 13765-2:2001- 12 Refractory mortars - Part 2: Determination of consistency using the reciprocating flow table	Refractory mortars	Consiste ncy	Flow tables and mould, mixer, etc.	-	The consistency of a refractory mortar is assessed by the increase in diameter of a sample, when subject to mechanical agitation using a reciprocating flow table	-	Considered and found not appropriate

Table 10: Standards for thixotropic behaviour

3.2.2 Laboratory or field test feasibility

Due to the fact that many methods require large space and electrical power, the test methods have to be generally simulated in the laboratory. The energy-input resp. the vibration of the described apparatus mimics the transport conditions. For simple field test methods could be created a small-sized robust design of the laboratory method, which is driven electrically, if electric power is available, or manually by a hammer e.g.

3.2.3 Apparatus

The tests examined use the following types of apparatus:

- Vebe meter (Consistometer) (Fig. 19)
- Flow table (Fig. 20; Fig. 21)
- Vibrating table (Fig. 22)
- Vibrating hammer (Fig. 23)

Fig. 19: Consistometer (Vebe meter, dimensions in mm) [43]

Fig. 20: Flow table [44]

Fig. 21: Flow table and conical mould (dimensions in mm) [45]

Key

2

- 1 Truncated conical mould
- 5 Stand
- 6 Horizontal shaft
- 7 Lifting spindle

3 Rigid table plate 4 Lifting cam

Disc

Fig. 23: Compaction rig assembly with vibrating hammer (dimensions mm) [47]

3.2.4 What is measured and how

For testing fresh concrete with the <u>Vebe meter</u> described in *BS EN 12350-3* the time taken for the surface of a disc to be fully in contact with the grout is measured (Vebe time). This time should be in the range of 5 to 30s. For determination of the <u>degree of compactibility</u> described in *BS EN 12350-4* the concrete is compacted by vibration. The distance from the surface of the compacted concrete to the upper edge of the container is used to determine the degree of compactibility. For determination of the consistency of concrete with the aid of a <u>flow table</u> described in *BS EN 12350-5* the spread of concrete (diameter) on a flat plate, which is subjected to jolting, is measured. In a similar way the standard *BS EN 13395-1* operates with mortars (cp. also *EN 1015-3*).

For determination of the density and water content of unbound and hydraulically bound mixtures samples in a CBR-type mould using an electrical powered <u>vibrating hammer</u> described in *prEN 13286-4* including a range of water contents have to be create of. The range includes the optimum water content at which the maximum dry density for the specified degree of compaction is obtained. Another apparatus for compaction is a <u>Vibrating table</u> described in *prEN 13286-5*: The mixture is compacted in a mould by means of a load on the top of the mixture. Then the laboratory dry density and corresponding water content are determined.

For the method described in *DIN 1168-2* the diameter of the water-building plaster-mixture is measured after it has been spread by operation (several hubs) of the table.

In the method described in *ISO 13765-2* the consistency of a refractory mortar is assessed by the increase of the diameter of a sample, when it is subjected to mechanical agitation using a reciprocating flow table.

3.2.5 Material to be examined

The tests are mainly employed for the following materials

- Fresh concrete
- Hydraulic cement mortars
- Unbound and bound mixtures
- Building plasters
- Refractory mortars

3.2.6 Feasibility of the methods to the materials for the Horizontal project

Important for the feasibility of methods for determination of the thixotropic behaviour for all materials of interest is the combination of penetration tests and energy input. This input can be applied electrically by vibrating apparatus or manually by hubs or knocks. For Horizontal project in general all energy-input-apparatus are suitable. To simulate transport conditions the vibrating apparatuses are well appropriate, whereby especially the external apparatuses like vibrating table are rather suitable than the internal apparatuses like vibrating hammer. Also the handling with the test samples is important (preparation, size of moulds, etc.). These items have to be determined in further investigations.

3.3 Piling behaviour

- o Slump test apparatus
- Compacting apparatus (e.g. Oedometer)
- CPB- Cubic piling box (after E. Pasqualini [48])
- o "Turned Box"

3.3.1 Standards and non-standardised methods analysed

The examined methods for the determination of piling behaviour of different substances are reported in Table 11:

Method	Material	Para-	Appara-	Standard	Physical	Utility/ field	Evaluation
		meter	tus	range	meaning/purpose	-	
ASTM	Hydraulic	Consiste	Mould	Up to 37,5	Concrete is placed and	Laboratory	Considered
C143/C143M-00	cement	ncy		mm in size,	compacted in a mould.	and field	and found
Standard Test	concrete	(slump)		not	The mould is raised,	method to	not
Method for Slump		,		applicable to	and the concrete	test the	appropriate
of Hydraulic-				non-plastic	allowed subsiding. The	consistency	
Cement Concrete				and non-	vertical distance	of hydraulic	
ASTM C143-74 (-				cohesive	between the original	cement	
78)				concrete	and displaced position	concrete	
					of the centre of the top		
					surface of the concrete		
					is measured and		
					reported as the slump		
					of the concrete.		
BS 1881-102:1983	Concrete	Slump	Mould, etc.	Slump 5-175	Filling the mould in	Classificatio	Considered
Testing Concrete -		(Consist		mm, max.	three layers, tamping	n of the	and found
Part 102: Method		ency),		particle size	each layer, raising the	workability	not
for determination of				40mm	mould vertically.	(table)	appropriate
slump					Measuring the slump:		
					determination of the		
					difference between the		
					height of the mould		
					and the highest point		
					of the sample being		
					tested		
BS 1881-103:1993	Concrete	Compact	Sampling	Max. particle	After preparation	Classificatio	Considered
Testing Concrete -		ing	tray,	size 40mm,	weigh the cylinder and	n of the	and found
Part 103: Method		factor	Compactin	compacting	its contents. Mixing	workability	not
for determination of		(Consist	g factor	factor: 0.70-	with concrete of the	(table)	appropriate
compacting factor		ency),	apparatus,	0.98; > 30	same sample, place in		
			etc.	strokes per	a cylinder and		
				layer	compact each layer by		
					using compacting		
					apparatus; weigh the		
					cylinder. Compact the		
					sample once more.		
					Calculate the ratio:		
					mass of the partially-		
					compacted concrete		
					/ mass of the fully		
		0			compacted concrete.		
BS EN 1170-	Glass-fibre	Consiste	Plastic or		Sample (200cm ³) is	water-	Considered
1.1998 Decent	reinforced	ncy,	metallic		tube, in the tube, lift the	cement ratio	and round
precast concrete	cement		lube, flat		ube vertically; after	(Suitability	
products - rest			plate with		sus read the number	for pumping	appropriate
fibro roinforcer			nine		of the circle reached	and	
nore reinforced			Derection		by the spreading	compaction)	
Moosuring the					matrix		
ivieasuring the			circles etc.				
consistency of the							
toot" mothed							
	Soil	Comara	Oodomata	Minimum	Soil is placed into a	Compressibil	Considered
ASTIVI D2435-90 Standard tost	3011	Compre	r		Suil is placed into a	Compressibil	for further
Stanuaru test		ssion	1	diamotor to	nioulu anu then	ny and	ior runner
dimensional		Vouna		beight ratio -	incrementally applied	evaluation /	investigation
unitensional	1	roung	1	meigini talio =	incrementally applied	evaluation /	

HORIZONTAL - Report No. 22

consolidation properties of soils		modulus		2.5 Minimum diameter = 5 cm	controlled-stress vertical loading. Settlements are measured. Primary and secondary compressibility is determined, as well as rate of consolidation.	in the laboratory	
CPB test: Cubic piling box [48]	Particular and lightly compacted materials (soil, waste, etc.)	Piling behavio ur	Cubic piling box	Minimum dimensions are related to the grain size of the material to be tested	Material is placed into the box and then the sidewalls are overturned. The natural slope angle of the remaining material is assessed	Determinatio n of the piling angle of loose materials	Considered for further investigation
"Turned Box" [Method in France]		Piling behavio ur	Rectangul ar Box		Comment: Further informations are necessary.		

Table 11: Standards and non-standardised methods for piling behaviour

3.3.2 Laboratory or field test feasibility

These test methods are mostly performed in the laboratory, because they require a lot of preparation. Special field test methods for determination of the piling behaviour don't exist so far. But for some apparatuses it is possible to create for simple field tests a small-sized robust design of the laboratory apparatus according to the analysed material.

3.3.3 Apparatus

The tests examined use the following types of apparatus:

- Moulds, if needed: laboratory tools (results: Fig. 24)
- Compacting apparatus (e.g. Oedometer) (Fig. 25; Fig. 26; Fig. 27)
- Plastic or metallic tube, flat plate

Besides these apparatuses another types of apparatuses, which are not reported in the standards, but may be considered as a promising tool to test the piling behaviour of the analysed materials, are the following apparatuses:

- Cubic Piling Box (CPB) (Fig. 28; Fig. 29)
- "Turned Box"

(a) True siump

(b) Shear slump

(c) Collapse slump

Fig. 25: Compacting factor apparatus [50]

A special form of compacting apparatus is the Oedometer

Fig. 26: Oedometer [48]

Fig. 27: Device for loading [48]

Fig. 28: Cubic Piling Box at start of test (closed sidewalls) [48]

Fig. 29: Cubic Piling Box at the end of test (opened sidewalls) [48]

3.3.4 What is measured and how

For the determination of the <u>slump</u> of hydraulic cement and concrete the sample is placed and compacted in a mould. The mould is raised, and the concrete allowed subsiding. The vertical distance between the original and displaced position of the centre of the top surface of the concrete is measured and reported as the slump of the concrete.

For the determination of the <u>Compacting factor</u> within 150s of placing the sample in the upper hopper from the compacting apparatus the cylinder and its contents are weighted. After that, the concrete in the upper hopper is mixed with concrete of the same sample, place in a cylinder in six layers and compact each layer by using either the compacting bar or the vibrator (hammer); weight the cylinder again. Stroking with the compacting bar or use Vibrating hammer/ table. Calculate the ratio of the mass of partially compacted concrete dividing by the mass of fully compacted concrete.

Another variant to determine the <u>slump</u> is following method: The sample (200cm³) is filled in a tube placed on a table with several circles, then the tube is lifted vertically; after 30s read the number of the circle reached by the spreading matrix. This test method needs a special flow table with some circles; due to the spreading the slump is determined "horizontally", not "vertically" like the other slump test methods.

The <u>Oedometer</u> test method covers procedures for determining the magnitude and rate of consolidation of soils when it is restrained laterally and drained axially while subjected to incrementally applied controlled stress loading. According to the standard procedure, the test is performed with constant load increment duration of 24 h. The specific loading schedule will depend on the purpose of the test. Each stress increment is maintained until excess pore water pressure is completely dissipated. During the consolidation process, measurements are made of change in the sample height and these data are used to determine the relationship between the effective stress and void ratio or strain, and the rate at which consolidation can occur by evaluating the coefficient of consolidation. The data from the consolidation test are used to estimate the magnitude and the rate of settlement of structures and embankments.

The test method with the aid of the <u>Cubic Piling Box (CPB)</u> can be used for determining the piling angle (angle of rest) of pieces. The particular material is placed into the box and, if necessary, it can be compacted. Then the sidewalls are suddenly overturned and the stable final configuration is surveyed. The natural slope angle of the remaining material can be measured on each side of the sample remaining on the box base.

3.3.5 Material to be examined

The tests are mainly employed for the following materials

- Hydraulic cement (concrete)
- Concrete
- Glass-fibre reinforced cement
- (Fine-grained) soils
- (Solid) waste

3.3.6 Feasibility of the methods to the materials for the Horizontal project

The standardised methods like slump tests require a certain threshold of consistency of the materials of interest. For determination of the piling behaviour new methods were developed, for example the "Turned Box" and the "Cubic Piling Box", which were created in France and Italy [48] respectively.

As far as piling behaviour is concerned, the Oedometer test can be used to characterize the compressibility of the material and to have an indication of how much a stratum of piled material can settle due to the loading of the material placed above. For piling behaviour, the selection of the loading schedule (maximum value, load increments and the duration of each increment) will be defined on the basis of the total height of piling and of the piling sequence. In particular, the maximum load will be necessarily lower that that used according to the standard for soils. The size of the mould that contains the sample can vary on the basis of the maximum grain size of the material to be tested.

The CPB test [48] can be easily performed on particular pieces like dewatered sludges, waste and soils, etc. as well as on cohesive materials e.g. compacted materials. As far as piling behaviour is concerned, the CPB can be used to immediately and easily assess the natural slope angle of a material.

4. CRITICAL POINT AND RECOMMENDATIONS

In this section mainly the methods with the expression "Considered for further investigation" in the column "Evaluation" in chapter 3 are discussed.

Standardisation procedures for Horizontal material examination will consist of

- Sampling, transport, preservation, storage
- Pre-treatment
- Measurement and evaluation of results.

4.1 Solidity

4.1.1 Comparison (discussion: pro/contra)

Laboratory vane shear apparatus

In general the "Vane shear strength" is one of the most commonly used parameter in the field of soil mechanics. There do exist a lot of standards. In Germany e.g. also exists such a parameter in the field of waste disposal / landfilling: For landfilling of wastes the *TA Siedlungsabfall* (1993) [14] gives a minimum value for the solidity of 25 kN/m². The vane shear strength of sewage sludge depends in some extent on the dry solid content, but there does exist no good correlation for different sludges. For the laboratory method there are two similar apparatus described in *ASTM D4648* and *ATV-Arbeitsbericht* [35, 23].

Contra: For reliable measurements of the vane shear strength the investigated materials have to be cohesive. Therefore the vane testing apparatus can't be applied for non-cohesive materials like coarse-grained soils.

Pro: Due to the fact that some investigations with sewage and waterworks sludges made by the laboratory vane shear apparatus (*ATV-Arbeitsbericht* and *Wichmann et al.* [23, 15]), this method should be preferred as the laboratory reference method. The calculation of the shear strength - after sample preparation and measurement -consists of the following equations after *Zweck* 1969 [51]):

$$\tau_{v} = \frac{M}{K} [kN / m^{2}]$$
(Eq. 4)

where M: max. torque in [kN m],

K:
$$\frac{\pi}{2} \cdot d^2 \cdot h \cdot (1 + \frac{d}{3h})[m^3]$$
 (Eq. 5)

where d: diameter of the sheared cylinder = width of the vane,h: height of the vane.

The shear strength τ_v is equal to the cohesion c_u of the undrained soil by (fast) shearing. For h = d:

$$\tau_{\nu} = \frac{3 \cdot M}{2 \cdot \pi \cdot d^3} \tag{Eq. 6}$$

For a constant shear rate the vane should be driven electrically e.g. with a velocity of 10 degree per minute, because the measured shear strength is influenced by the shear rate.

HORIZONTAL - Report No. 22

The characteristics of this apparatus are [16]:

- length of time: ca. 60 minutes (for 3 measurements)
- good handling (motorised test procedure)
- reproducibility of test values (average +/- 10 %)
- measuring range: 1- 180 kN/m².

Another investigated vane testing apparatus - pocket vane shear apparatus - with several vanes of different sizes was not as suitable as other methods for determining the shear strength of materials with lower dry solids content. This aspect was pointed out by investigations performed with waterwork sludges (*Wichmann et al.* [15]).

Penetrometer

The described apparatuses are suitable to obtain reliable results of the measurements in both laboratory and field.

Contra: The procedures with penetrometers are time-dependent. The measurement has to be carrying out within a fixed duration of e.g. 5 seconds. This aspect affords a precise test execution.

Pro: The advantage is the great variation of the penetrometer tip according to the investigated material. There does exist a range of different tips in form of a plunger, a cone or a needle. That is why several methods are considered for further investigations. Explicit determinations, what kind of tip for a special material is the best, have to be investigated in further experiments. The procedure of calculation is quite simple: According to *Hansbo (1957)* [55] the sludge cohesion (undrained shear strength c_u) can be derived from the cone penetration depth using the empirical equation:

$$c_u = \frac{K \cdot m \cdot g}{i^2} \cdot \left(1 + \frac{h}{i}\right) \tag{Eq. 7}$$

where m: mass of the cone,

- g: acceleration of gravity,
- i: depth of penetration (indentation),
- h: distance between cone apex and soil surface when the cone is dropped (normally h = 0),
- K: function of the apex angle of the cone (Fig. 30).

Fig. 30: Relation between the parameter K and the apex angle β of the cone

Further advantages are[16]:

- length of time: ca. 5 minutes (for 3 measurements)
- very good handling
- reproducibility of test values (average +/- 10 %)
- costs: ca. 40 % of the Laboratory Vane Shear Apparatus

Vicat apparatus

The Vicat apparatus is a special kind of a penetration apparatus and has a tip in terms of a needle. In particular the beginning and end of solidification is measured, that means it could be verify shear strength. This aspect has to be developed in further investigations; it is one part of research needs in the field of determining solidity.

Contra: Because of the shape of the penetration tip this apparatus could be only suitable for solid materials like dewatered sludges, particular treated bio-waste and soil. In further investigations this assumption has to be confirmed.

Pro: The Vicat apparatus is a special penetration apparatus, which operates time-independent. For the measuring procedure there is a fixed depth, which the needle has to be reached. For determining the consistency of materials this aspect could be much more comfortable during the measurements.

Pocket penetrometer

Pro: A promising tool for simple field tests – determination of the penetrometer bearing capacity p_p – is the pocket penetrometer after Neuschäfer. After sample preparation and performance the value of penetration resistance can be read directly on the scale of the penetrometer. The penetrometer bearing capacity is determined with the aid of a nomogram, whereby the average of the values, which are indicated by the scale within three measurements, and the factor of the cone tip (see Fig. 17) are the input values. Furthermore the obtained value can be converted to the parameter "vane shear strength τ_v " by a regression line e.g. for waterworks sludges (Fig. 31). In general the equation for the regression line [23] is determined as

$$\tau_{v} = (-0, 56) + 0,156 \cdot p_{p}$$

Fig. 31: Comparison penetrometer bearing capacity vs. laboratory vane shear strength [16]

Further advantages of this method are [16]:

- consisting several cone tips for a wide range of materials
- length of time: ca. 5 minutes (for 3 measurements)
- good handling
- reproducibility of test values (average +/- 8 %)
- measuring range: 0 ca. 90 kN/m² (Vane Shear Strength)

- low costs: ca. 8 % of the Laboratory Vane Shear Apparatus.

Pocket cylinder penetrometer

Contra: Only a few investigations were carried out in the past. For certain conclusions further investigations will be necessary.

Pro: However, this penetrometer can be also a capable apparatus for field tests, in this case for measuring the unconfined compression strength q_u . The *TA Siedlungsabfall (1993)* [14] gives for landfilling of wastes a minimum value for the unconfined compression strength of 50 kN/m² with an axial deformation of max. 20%. It could be a helpful tool for the choice of the best suitable instrument, that there do exist such default values. The unconfined compression strength is related to the undrained shear strength c_u in terms of Eq. 3 (compare chapter 1.6.1):

 $q_u = 2 \cdot c_u$.

Further characteristics are [16]:

- length of time: ca. 5 minutes (for 3 measurements)
- very good handling
- reproducibility of test values (average +/- 8 %)
- low costs: ca. 6 % of the Laboratory Vane Shear Apparatus

4.1.2 Recommendations

For the determination of the shear strength it is recommended that the triaxial test should be the absolute laboratory reference method (e.g. after *DIN 18137-2* [52]).

4.1.2.1 Laboratory reference method

Method 1: Laboratory vane shear apparatus (ATV-Arbeitsbericht 1989)

Method 2: Penetrometer (cone or needle)

Method 3: Vicat apparatus

4.1.2.2 Field test

Method 1: Pocket penetrometer after Neuschäfer Method 2: Pocket cylinder penetrometer

4.2 Thixotropic behaviour of solid materials

4.2.1 Comparison (discussion: pro/contra)

For standardisation of the thixotropic behaviour of solid materials a combination of standardised methods will be determined. Because of the experiences of the experts committee the combination "Penetrometer + energy-input" will be preferred. The advantage of penetrometers was already explicated in section 4.1.1. The energy input can be applied electrically by vibrating apparatus or manually by hubs or knocks. In the following only the apparatuses for the energy-input are described:

Contra: Vibrating hammer

The vibrating hammer is an internal apparatus. During the measurement of the thixotropic behaviour this instrument could influence the procedure and therefore the results would be not certain.

Pro: Vibrating table

To simulate transport conditions the vibrating apparatuses, especially external apparatuses, are rather suitable than the internal apparatuses or the hand-made methods. For laboratory reference the apparatus can be more exact and thus more complex than a simple field method.

For simple field test methods could be create a small-sized robust design of the laboratory method, which is driven electrically, if electric power is available, or manually by a <u>hammer</u> e.g.

4.2.2 Recommendations

4.2.2.1 Laboratory reference method

Method 1: Penetrometers + energy-input (e.g. vibrating table)

4.2.2.2 Field test

Method 1: Penetrometers + energy-input (e.g. vibrating table: small-sized apparatus, which should be easy to operate)

Method 2: Penetrometers + energy input (e.g. by a hammer, if electric power is not available; adequate mould)

4.3 Piling behaviour

4.3.1 Comparison (discussion: pro/contra)

Oedometer

The strain condition of a material due to piling are different from those in the Oedometer, where lateral strain are prevented. Nevertheless, if the material is piled in lifts that are large enough in comparison with their height (three times at least), oedometic strains can be considered as representative. The settlement of the lower portion of the material can be evaluated.

The minimum sample diameter and height should be 20 cm in order to test a representative volume of material. To avoid or reduce the friction at the interface between the material and the ring as negligible a film of grease should be placed on the internal wall of the mould before placing the sample. A compaction mould for Proctor compaction (ASTM D698-91 [53]) can be used as well.

Pro: Important advantages of this method are that the procedure is well known – it is a Standard in France and USA and an overall method in practise in many other countries - and it is easy to handle. From there this method should be preferred as an additional laboratory reference method.

Cubic Piling Box (CPB)

The Cubic Piling Box should be preferable to the French method (No ref. 256, cp. Annex 1) because the friction between the sidewalls and the material to be tested does not affect the final result in terms of slope angle. The influence of the CPB dimension on the slope angle should be negligible provided that the side of the box is much greater of the maximum grain size of the sample. This method was originally proposed for solid waste materials having a maximum grain size of about 5 cm (Pasqualini et al., 2003 [48]). In that case, the sides of the cubic box were equal to 60 cm. For other materials a minimum of 30 cm x 30 cm should be considered in order to test a representative volume of material. The dimension of the cubic box should be at least 5

times greater than the maximum grain size of the sample to be tested. For detailed results of other materials for Horizontal project further investigations are necessary.

Pro: Important advantages of this method are the very simple handling, the feasibility to both in the laboratory and in situ, no specialised personnel and the great variability due to the different sizes of the Cubic Piling Box related to the grain size of the material.

4.3.2 Recommendation

4.3.2.1 Laboratory reference method Method 1: Cubic Piling box (CPB) Method 2: Oedometer

4.3.2.2 Field test Method 1: Cubic Piling Box (CPB)

4.4 Summary of recommended methods

The following Table 12 gives an overview of the recommended apparatuses and methods for determination of the solidity, thixotropic behaviour and piling behaviour.

Method (Apparatus)	Solidity	Thixotropic behaviour of solid materials	Piling behaviour
Penetrometer	Shear strength (Lab / field)	Shear strength (Lab*/field ^{+/**})	
Vicat apparatus	Shear strength (Lab)		
Laboratory vane shear apparatus	Vane shear strength (Lab)		
Pocket penetrometer (Neuschäfer)	Bearing capacity ¹ (Field)		
Pocket cylinder penetrometer	Unconfined compression strength ² (Field)		
Vibrating table		Shear strength (Lab*/ field ⁺)	
Hammer (manual)		Shear strength (Field ^{**})	
Cubic piling box (CPB)			<i>Piling angle</i> (Lab/field)
Oedometer			Compactibility (Lab)

Combinations for thixotropic behaviour: *+*; $^{+}+^{+}$; $^{**}+^{**}$

¹ Conversion into shear strength is possible

² Conversion into undrained shear strength is possible.

Table 12: Summary of the recommended apparatuses

4.5 Research needs

4.5.1 Basics of methods

The mechanical property "solidity" can be determined directly by the shear strength or by the penetration bearing capacity resp. the unconfined compression strength, which could be both converted into shear strength. The measure of the shear strength during an energy-input in terms of vibration should describe the "thixotropic behaviour". For the "piling behaviour" it is recommended to measure the compactibility and/or piling angle.

The proposed methods for determining the parameters mentioned above are either existing standards, methods used in practise or methods, which are still in a development stage. However, for improvement of the methodologies most of the procedures and used apparatuses have to be optimised by further examinations, especially for the materials, which are discussed in the Horizontal project. For all parameter do exist methods for both laboratory and field, whereby the field test results will be compared with laboratory ones used as reference.

4.5.2 Applicability of methods to Horizontal materials

Within the scope of this project the proposed methods should be applicable to the whole range of Horizontal materials (sludge, treated bio-waste and soil). Investigations in the past were often carried out only for several materials like sewage sludge or waterworks sludges for the parameter solidity or solid, particular bio-wastes for the parameter piling behaviour e.g.. But during these performed tests the influences of the material properties (grain size and shape, dry solids, etc.) were exhibit. By means of this knowledge it is possible to assume behaviour in general by using a special method.

For adaptation of methods for all materials mentioned above or for a more exact measure it is possible to vary the dimensions of the apparatuses: For example the cone size and shape or weight of the penetrometer tip according to the consistency of the investigated sample. Another example is to vary the size of the sidewalls of the Cubic Piling Box (CPB) according to the grain size of the investigated material. These variations are promising tools for optimisation the measuring procedures. Further examinations of the proposed methods, which have to be carried out in the future, should confirm the theoretical considerations.

Another item is the pre-treatment of the samples before carrying out the investigations. Especially a rough determination of the consistency before application of a special method could be advantageous for the measurement. Different types of sampling and pre-treatment are required for each method. Important for the pre-treatment are the parameters:

- particle size of the material,
- dimensions of the mould,
- compaction of the materials,
- moreover the density of the sample.

For example the pre-treatment for measuring the vane shear strength is explained as follows [23]:

- (1) The material if needed, dewatered is reduced to small pieces with particle sizes of about 10 mm
- (2) The mould in this case the small Proctor vessel has an internal diameter of 100 mm und a height of 120 mm.
- (3) The material is filled into the Proctor vessel in three equal portions (each about 100 mm before compaction) and is compressed with ten knocks by the small Proctor hammer (falling weight of 2.5 kg, height of falling 300 mm, diameter of the plunger 50 mm, diameter of compensating plate 99,5 mm, compare *DIN 18127* [31]).

(4) After finishing emplacement and before test performance the density have to determined for a uniform starting position.

The procedure mentioned above could be transmitted to the pre-treatment of measuring the shear strength or related parameters - penetration bearing capacity and unconfined compression strength – in common and also for examination of the thixotropic behaviour, whereby the shear strength is measured during shear stress. For determination of the piling behaviour (piling angle) a pre-treatment in terms of reducing to small pieces with a uniform particle size - regarding the size of the sidewalls of the Cubic Piling Box (CPB) – is proposed. It should be a similar pre-treatment like the method for the shear strength, but instead of the Proctor vessel and hammer the CPB and, if needed, according compaction apparatuses are used. For further considerations it could be helpful to cooperate with the WP 2 "Sampling".

4.5.3 Questions to be answered

Research must define through interlaboratory tests precision, repeatability and reliability of methods proposed, where:

- *Repeatability* is defined as the ability of a method to reproduce a measurement while being tested under an unchanging set of conditions. This does not imply that the obtained value is correct, but rather that it is the same every time;
- *Reproducibility* is the same as repeatability, but at a different set of conditions. It is therefore a more realistic indication of a method to reproduce a measurement, whenever a predefined set of conditions is recreated.

However, as far as these methods are concerned the use of *fresh sludge* could be required, so the following problems arise:

- the sludge characteristics change with time of storage, also considered that any preservation practice (e.g. freezing) makes things worse;
- the sludge characteristics are strongly affected by transport and handling;
- fresh sludge requires particular precautions and authorization for transport by ordinary delivering systems.

4.5.4 Route, how to answer them

A protocol of validation of physical parameters will be prepared (Protocol for validation of physical parameter methods – CEN/TC308/WG1/TG3 – N29 (ref. [54] to be followed).

4.5.5 Steps to be taken

- Laboratory tests (cp. 4.5.4)
- \blacktriangleright Evaluation (cp. 4.5.4)
- Final proposal methods to be standardised (Research Report, Version 1)
- Consulting with CEN/TC's/WG's, etc.
- Revision of proposal for methods to be standardised (Research Report, Version 2)
- Interlaboratory tests included evaluation
- ➢ Final draft for methods to be standardised

4.6 Contacts with CEN/TC's/WG's

4.6.1 Actions

- <u>01.08.2003</u>: Circulation of the first draft of "*Physical Properties Solidity, Thixotropic Behaviour and Piling Behaviour Desk Study*" (Horizontal report No. 22) with the list of standards researched (see Annex 1), proposals for draft standards (see Annex 2 12) and a cover letter (see Annex 13) to the members of
 - CEN/TC308/WG1,
 - CEN/TC308/WG1/TG3 and
 - Aldo Giove (member of the CEN/TC292/WG2).

The comments, which were received until 08/20/2003, listed in Annex 14 with according comments from our side.

<u>29.08.2003</u>: Discussion of the first draft of Horizontal reports No. 21 and No. 22 during the CEN/TC308/WG1/TG's-meeting resp. the final CEN/TC308/WG1-meeting in Hamburg. Releasing the final versions of the first drafts of Horizontal reports No. 21 and No. 22; they will be circulated in professional groups and available for comments until 10/17/2003.

4.6.2 Comments received and incorporated

- 05.08.2003: Comments received from J-C. Baudez: (see Annex 14, commented)
- 08.08.2003: Comments received from R. Thierbach (see Annex 14, commented)

4.6.3 Official meetings

WP7-Meetings

- 12.02.2003 in Bergamo
- 04.04.2003 in Ancona
- 03-06.07.2003 in Ancona
- 24-28.07.2003 in Bari

CEN/TC308/WG1 - Meetings

- 26-28.03.2003 in Oslo
- 29.08.2003 in Hamburg

CEN/TC308/WG1/TG3 - Meetings

- 26-28.03.2003 in Oslo
- 28.08.2003 in Hamburg

5. DRAFT STANDARD (CEN TEMPLATE)

Note: For writing horizontal standards the structure of p. 14 of the guideline was used.

5.1 Solidity

- 5.1.1 Laboratory reference method
- 5.1.1.1 Method 1

Physical properties – Determination of solidity – "Vane shear strength": Laboratory reference method by 'Laboratory vane shear apparatus'

The proposal for this standard is documented in Annex 2.

5.1.1.2 Method 2Physical properties – Determination of solidity – "Shear strength": Laboratory reference method by 'Penetrometer'

The proposal for this standard is documented in Annex 3.

5.1.1.3 Method 3Physical properties – Determination of solidity – "Shear strength": Laboratory reference method by 'Vicat apparatus'

The proposal for this standard is documented in Annex 4.

5.1.2 Field test

5.1.2.1 Method 1

Physical properties – Determination of solidity – "Bearing capacity": Field test by 'Pocket penetrometer'

The proposal for this standard is documented in Annex 5.

5.1.2.2 Method 2

Physical properties – Determination of solidity – "Unconfined compression strength": Field test by 'Pocket cylinder penetrometer'

The proposal for this standard is documented in Annex 6.

5.2 Thixotropic behaviour of solid materials

5.2.1 Laboratory reference method

5.2.1.1 Method 1

Physical properties – Determination of thixotropic behaviour – "Solid materials": Laboratory reference method by combination of 'Penetrometer and Vibrating table'

The proposal for this standard is documented in Annex 7.

5.2.2 Field test

5.2.2.1 Method 1

Physical properties – Determination of thixotropic behaviour – "Solid materials": Field test by combination of 'Penetrometer and Vibrating table'

The proposal for this standard is documented in Annex 8.

5.2.2.2 Method 2

Physical properties – Determination of thixotropic behaviour – "Solid materials": Field test by combination of 'Penetrometer and Hammer '

The proposal for this standard is documented in Annex 9.

5.3 Piling behaviour

5.3.1 Laboratory reference method

5.3.1.1 Method 1

Physical properties – Determination of piling behaviour – "Piling angle": Laboratory reference method by 'Cubic Piling Box (CPB)'

The proposal for this standard is documented in Annex 10.

5.3.1.2 Method 2

Physical properties – Determination of piling behaviour – "Compactibility": Laboratory reference method by 'Oedometer test'

The proposal for this standard is documented in Annex 11.

5.3.2 Field test

5.3.2.1 Method 1

Physical properties – Determination of piling behaviour – "Piling angle": Field test by 'Cubic Piling Box (CPB)'

The proposal for this standard is documented in Annex 12.

REFERENCES

1. P. Battistoni, "Pre-treatment, measurements execution procedures and waste characteristics in the rheology of sewage sludges and the digested organic fraction of municipal solid wastes". Water Science and Technology, Vol. 36. N°11, pp 33-41, 1997

2. G.A. Carthew, C.A. Goehring, J.E. Teylingen, Development od dynamic head loss criteria for raw sludge pumping. Journal of the water Poll. Contr. Fed., 55, 472 (1983)

3. M.C. Mulbarger, S.R. Copas, J.R. . Kordic, F.M. Cash, Pipeline friction losses for wastewater sludges, J. Wat. Poll. Con. Fed., 53, 1303 (1981)

4. R.C. Frost, J.A. Ovens. A method of estimating viscosity and designing poumping system for thickened heterogeneous sludges.8th Int. Conf. on the Hydraulic Transport of Solids in Pipes, Johannesburg 25-27 August, 1982, 485

5. A. Valioulis. Relationship between settling, dewatering and rheology properties of activated sludges. Master thesis. Cornell University, Ithaca, N.Y., 1985, USA

6. Campbell H.W., Crescuolo P.J. The use of rheology for sludge characterization, wat. Sc. And Techn., 14, 475, (1982)

7. CEN/TC308/WG1/TG3: Usefulness of rheological measurement – Report No. 02 (1999)

8. P. Battistoni, G. Fava, Maria L. Ruello, "Rheology of sewage sludge (1): Development of a standardised methodology for rheological properties measurements. Ingegneria Sanitaria, $N^{\circ}2/90$

9. Loll U., Measurement of laboratory vane shear strength as community standard of reference method for testing the suitability of dewatered sludges for use as landfill. Recycling Int., Thomè-Kozmiensky (ed.),2, 855-860,(1989)

10. DVGW-Arbeitsblatt W 221-1: Nebenprodukte und Rückstände aus Wasseraufbereitungsanlagen: Teil 1: Grundsätze und Planungsgrundlagen, September 1999, WVGW, Bonn

11. DVGW-Arbeitsblatt W 221-3: Nebenprodukte und Rückstände aus Wasseraufbereitungsanlagen: Teil 3: Vermeidung, Verwertung, Beseitigung, Februar 2000, WVGW, Bonn

12. Mc Tigue, N. E. and Koppers, H. M. M. and Cornwell D. A. (1990). Regulations, Characteristics, and Analytical Considerations, in: Slib, Schlamm, Sludge. Cornwall, D. A. (ed.), Koppers, H.M.M. (ed.) American Water Works Association Research Foundation (AWWARF) und Keuringsinstituut voor Waterleidingartikelen (KIWA), Denver

13. LAGA (1979). Die geordnete Ablagerung von Abfällen, Merkblatt.

14. TA Siedlungsabfall (1993): Dritte allgemeine Verwaltungsvorschrift zum Abfallgesetz, Bundesanzeiger

15. Wichmann, K; Riehl, A.: Mechanical properties of waterwork sludges – Shear strength, Wat. Sci. Tech., 1997, Vol.36, No 11, pp 43-50

16. L. Spinosa with the cooperation of M. Remy and K. Wichmann (2003): Measurement of sludge "Physical consistency" – Technical Report

17. Wichmann K., Akkiparambath A., Schneider S. (2002): Mengen, Zusammensetzung und Entsorgung von Wasserwerksrückständen im Jahr 1998 sowie zukünftige Datenerfassung (Auswertung der Umfrage von 1999); GWF, Wasser Abwasser, 143 Nr. 10

18. Schneider, S. (1995): Rückstände aus der Trinkwasseraufbereitung in Deutschland: Mengen, Zusammensetzung und Entsorgungswege, Abschlußbericht, ESWE-Institut, Wiesbaden

19. Meyer, E. and Dammann, E. (1995). Verwertung von Eisenhydroxidschlämmen aus der Trinkwasseraufbereitung in der Baustoffindustrie, Schlussbericht, Forschungsgemeinschaft für Wasserwirtschaft und Wasserversorgung an der Technischen Universität Hamburg-Harburg, Hamburg

20. Handbuch Wasserversorgungs- und Abwassertechnik (Band 2: Wassergewinnungs- und Wasseraufbereitungstechnik: 6.Ausgabe

21. P. Battistoni, G. Fava, F. Cecchi and P. Pavan, "Rheology of sludge from semi-dry anaerobic digestion of municipal solid waste". Environmental Technology, Vol. 12, pp 897-905, 1991

22. P. Battistoni, G. Fava, C. Stanzini, F. Cecchi and A. Bassetti, "Feed characteristics and digester operative conditions as parameters affecting the rheology of digested municipal solid wastes". Water Science Technology, Vol. 27, N°2, pp 37-45, 1993

23. ATV-Arbeitsbericht: Die Bestimmung der Deponierfähigkeit von Schlämmen mit der Referenzmethode "Laborflügelscherfestigkeit", ATV-Fachausschuss 3.2 und 3.6, Gesellschaft zur Förderung der Abwassertechnik e.V. (GFA), 53773 Hennef: Korrespondenz Abwasser (1989), 36 (8), S. 903-909

- 24. Costet G, Sanglerat G., 1975: Cours pratique de mécanique des sols (tomes 1 et 2), 2^{ième} édition, Dunod
- 25. Gazbar S., 1993: Evaluation et amélioration des performances des procédés de déshydratation mécanique des boues résiduaires. Thèse de doctorat de l'institut polytechnique de Lorraine
- 26. Tisot J-P, Abadie J-M., 1997: Characterisation of sludge and geochemical properties, in: International Association on water quality, water research institute, specialist group on sludge management eds. The rheology of sludges. Congès de Bari (It)

27. J-C. Baudez: Consistency, Journal of Rheology, Vol. ?, No ?, (2002 or 2003?)

28.

29. Gehm, L.: Rheologie, Praxisorientierte Grundlagen und Glossar; Vincentz Verlag, Hannover 1998 (Coatings Compendien)

30. Schramm, G.: Einführung in Rheologie und Rheometrie; Haake Rheometer, Gebrüder Haake GmbH, Karlsruhe 1995

31. DIN 18127 (1997): Proctorversuch, Beuth-Verlag, Berlin

32. ASTM D 3080-90: Standard test method for direct shear test of soils under consolidated

HORIZONTAL - Report No. 22

drained conditions, Annual Book of ASTM Standards, Vol. 04.08

33. Duncan, Chester I. Jr.: Soils and Foundations for Architects and Engineers, Second Edition; Kluwer Academic Publishers; Boston/London/Dordrecht 1998

34. ASTM D2573-72 (1978): Standard test method for field vane shear test in cohesive soil, Annual Book of ASTM Standards, Vol. 04.08

35. ASTM D 4648-00: Standard test method for laboratory miniature vane shear test for saturated fine-grained clayey soil, Annual Book of ASTM Standards, Vol. 04.08

36. ASAE S313.2 (1994): Soil cone penetrometer, ASAE Standards

37. DIN 1168-2 (1975): Baugipse: Anforderungen, Prüfungen, Überwachung; Beuth-Verlag, Berlin

38. ASTM C405-82: Standard practice for estimating consistency of wet-mixed thermal insulating cement, Annual Book of ASTM Standards, Vol. 04.06

39. ASTM D217-82: Standard test methods for cone penetration of lubricating grease, Annual Book of ASTM Standards, Vol. 05.01

40. ISO 2137 (1985): Petroleum products – Lubricating grease and petrolatum – Determination of cone penetration, International Organization for Standardisation

41. ASTM D2884-93 (2002): Standard test method for yield stress of heterogeneous propellants by cone penetration method, Annual Book of ASTM Standards, Vol. 05.01

42. Fraccini (Company): Geotester (Pocket penetrometer)//Wichmann K., Riehl A.: Project: Mechanical properties of waterwork sludges – shear strength (unpublished).

43. BS EN 12350-3 (2000): Testing fresh concrete - Part 3: Vebe time, British Standard

44. BS EN 12350-5 (2000): Testing fresh concrete – Part 5: Flow table test, British Standard

45. ISO/DIS 13765-2: (Draft international standard): Refractory mortars – Part 2: Determination of consistency using the reciprocating flow table, International Organization for Standardisation

46. BS EN 13395-1: 2002: Products and systems for the protection and repair of concrete structures – Test methods – Determination of workability – Part1: Test for flow of thixotropic mortars, British Standard

47. European Committee for Standardisation (CEN): EN 13286-4 (2003): Unbound and hydraulically bound mixtures – Part 4: Test methods for laboratory reference density and water content – vibrating hammer, European Standard

48. Pasqualini E., Patacchini C., Stella M. (2003) Mechanical characterisation of municipal solid waste (in Italian). Proc. Annual Meeting of the Researchers in Geotechnics, IARG 2003.

49. BS 1881: Part 102 (1983): Testing concrete-Part 102: Method for determination of slump, British Standard

50. BS 1881-103 (1993): Testing concrete – Part 103: Method for determination of compacting factor, British Standard

51. Zweck, H.: Baugrunduntersuchung durch Sonden, Verlag Ernst + Sohn, Berlin/München
 66 HORIZONTAL – Report No. 22

(1969)

52. DIN 18137-2 (1990): Baugrund, Versuche und Versuchsgeräte; Bestimmung der Scherfestigkeit; Triaxialversuch, Beuth-Verlag, Berlin

53. ASTM D698-00a: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³)), Annual Book of ASTM Standards, Vol. 04.08

54. Protocol for validation of physical parameter methods – CEN/TC308/WG1/TG3 – N29 (2003)

55. Hansbo, S. (1994): Foundation Engineering, Developments in Geotechnical Engineering, 75, Elsevier

ANNEX 1

ANNEX 2

ANNEX 3

ANNEX 4

ANNEX 5

ANNEX 6

ANNEX 7

ANNEX 8

ANNEX 9

ANNEX 10

ANNEX 11

ANNEX 12

ANNEX 13

TUHH Wasserwirtschaft D-21071 Hamburg

CEN/TC308/WG1

ARBEITSBEREICH WASSERWIRTSCHAFT UND WASSERVERSORGUNG PROF. DR.-ING. KNUT WICHMANN

CEN/TC308/WG1/TG3

M. Aldo Giove

Hamburg, 01.08.03 Th

Horizontal WP 7 "Physical Parameters" 1. Draft Report of Desk Study No. 22 "Solidity, Thixotropic Behaviour and Piling Behaviour"

Dear all,

in the annex "HorizontalNo22_010803.pdf", "annex1_010803.pdf" and "annex2_010803.pdf" you will find the first draft of our desktop study report on "Solidity, Thixotropic Behaviour and Piling Behaviour". Please give us your comments until Wednesday, 20. August 2003 by email to below address.

All the comments received will be discussed at the Hamburg meeting of CEN/TC308/WG1/TG3 on 28.08.03 and of CEN/TC308/WG1 on 29.08.03.

The final version will be prepared at the end of the WG1 meeting in order to be sending to the coordinators on HORIZONTAL by 31. August 03 (absolute deadline).

Many thanks for your cooperation.

Kind regards,

K. Wichmann / C. Thormählen

ANNEX 14

08/05/2003: Jean-Christophe Baudez:

Dear Claudia, I read your paper. My comments are below.

1- About thixotropy (p 20), I think there is a misunderstanding between thixotropy and viscoelasticity. You wrote "it changes from the liquid to the solid state and vice versa ... many polymers are thixotropic". Many polymers are viscoelastic, defined by three regions: first, a linear viscelastic behavior, then, a non-linear viscoelastic behavior, and finally, depending the structure, a viscous behavior or a rupure. (Pasty sewage sludge exhibits similar behavior, Baudez and Coussot, 2001, in Journal of Rheology).

Comment: I deleted the text passage about the polymers and added in chapter 1.6.2 some items about thixotropic behaviour resp. thixotropy in general (measuring procedures, etc.). Furthermore I integrated the material behaviour in stress-strain relationship in chapter 1.6.1 about solidity.

2- For the Vane Shear Strength, I think the strain (or rotation angle) should be recorder with time during each experiment. Some solid sludge must be elastic, and recording the shear strain during with the vane test is one of the methods to highlight this behaviour.

Comment: It's a good idea, for some operations like transportation or pumping it makes sense to integrate a time-measuring device to display the material behaviour during the shear period.

Proposal for incorporated text (p.54):

"Furthermore it is recommended (see comments from J-C. Baudez, Annex 14) to integrate a time-measuring device in the test procedure to record the strain (or rotation angle) depending on the time. This method can highlight the elastic behaviour, which is shown by some solid sludge."

3- What do you mean by "flow table"? The inclined plane test? If so, you can read a paper written by P Coussot in Rheologica Acta, in 1995 (I think).

Comment:

4- About slump test, please, find in attached file a paper which summarize the principles and uses.

Comment: These aspects will be included in the Horizontal report No.21.

Sincerely yours,

Jean-Christophe Baudez Cemagref Domaine des Palaquins F-03150 Montoldre Tél. 33-(0)4-70-45-73-60 Fax. 33-(0)4-70-45-19-46

Attached: 12_133.pdf

HORIZONTAL - Report No. 22

08/05/2003: Roland Thierbach:

In "HorizontalNo.22" wird unter 3.2 die Thixotropie behandelt, unter 3.2.4 "What is measured and how" wird jedoch mit keinem Wort darauf eingegangen wie ebendiese gemessen wird.

In "HorizontalNo. 22" the chapter 3.2 is about Thixotropy, but under 3.2.4 "What is measured and how" the measuring procedure of Thixotropy isn't explained in details.

Comment: In this report merely the thixotropic behaviour should be described. For this reason the measuring procedure of thixotropy generally needn't describe in details. In chapter 1.6.2 I specified the determination of the thixotropy resp. the hysteresis area, whose size display the degree of thixotropy.

Wäre es nicht sinnvoll, die Zahl der ausgewählten Messverfahren noch weiter zu begrenzen? (Generell würde ich immer Verfahren bevorzugen, die ein Ergebnis in einer SI-Einheit haben.)

Make it sense, to limit the number of the selected methods? (In general I 'd like preferring procedures with results in SI-unit).

Comment: In our opinion at the beginning of research it is important to consider a wide range of methods for further investigations. These further investigations including test series should confirm the theoretical considerations or not. In this stage it makes sense to limit the test methods.

Die Reporte 21 und 22 scheinen sich in weiten Teilen zu überschneiden. Wäre es nicht sinnvoll sie zusammenzufassen?

The reports No. 21 and 22 seem to be equal in some parts. Make it sense to summarise these reports?

Comment: Yes, some parts in both reports are equal. This aspect is mentioned in the last passage of chapter 1.2. But there are two different applications and it is reasonable to distinguish the mechanical properties on the one hand in flowability and on the other hand in solidity together with the thixotropic and piling behaviour. In addition a common report will be very extensive and consequently very large.

Es stecken einige grammatikalische Fehler drin; bei manchen Passagen merkt man deutlich, dass sie ein Deutscher geschrieben hat. D.h. es sollte noch mal ein "native speaker" drüberschauen.

There are some grammatical mistakes; in some text passage it is quite evident that a non-native speaker wrote this text. From there a native speaker should read it once more.

Comment: Yes, I agree with you.

Gibt es (neben der Viskosität) Korrelationen zwischen den behandelten Parametern und dem Druckverlust der bei der Förderung von Schlämmen in Rohrleitungen anfällt? Wenn ja, wäre es sinnvoll diese mit aufzunehmen?
Is there – beside the viscosity - any correlation between the examined parameters and the loss of pressure, which appears during the conveyance of sludges in pipes? If so, make it sense, to include these parameters in the report?

Comment: This is a question for the flowability-report (No.21), that's why I forwarded this item to the experts of flowability.

Roland Thierbach Hamburger Stadtentwässerung HSE 411 Hauptabteilung Klärwerke Abschnitt Verfahrens- und Systemtechnik Banksstr. 4-6 20097 Hamburg

Tel. 040/3498-5411 Fax 040/3498-5402